Modern Methods and Current Trends in the Analytical Chemistry of Flavanones

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review covers the specific features of the structure of flavanones and a critical review of methods for their determination in various samples. The data are summarizes according to the methods of analysis: chromatographic, electrophoretic, spectral, and electrochemical. Analytical possibilities of each group of methods and their advantages and disadvantages are discussed. Special attention is paid to the use of chemically modified electrodes based on carbon nanomaterials, 3D nanoporous metal structures, composites of metal oxides and sulfide nanoparticles or dyes with carbon nanomaterials, and also combinations of modifiers of various types in flavanone voltammetry.

About the authors

E. N. Yakupova

Butlerov Institute of Chemistry, Kazan Federal University

Email: Ziyatdinovag@mail.ru
420008, Kazan, Tatarstan, Russia

G. K. Ziyatdinova

Butlerov Institute of Chemistry, Kazan Federal University

Author for correspondence.
Email: Ziyatdinovag@mail.ru
420008, Kazan, Tatarstan, Russia

References

  1. Зиятдинова Г.К., Будников Г.К. Природные фенольные антиоксиданты в биоаналитической химии: состояние проблемы и перспективы развития // Успехи химии. 2015. Т. 84. № 2. С. 194. (Ziyatdinova G.K., Budnikov H.C. Natural phenolic antioxidants in bioanalytical chemistry: State of the art and prospects of development // Russ. Chem. Rev. 2015. V. 84. № 2. P. 194. )https://doi.org/10.1070/RCR4436
  2. Veitch N.C., Grayer R.J. Flavonoids and their glycosides, including anthocyanins // Nat. Prod. Rep. 2008. V. 25. № 3. P. 555. https://doi.org/10.1039/B718040N
  3. Barreca D., Gattuso G., Bellocco E., Calderaro A., Trombetta D., Smeriglio A., Lagan G., Daglia M., Meneghini S., Nabavi S.M. Flavanones: Citrus phytochemical with health-promoting properties // Biofactors. 2017. V. 43. № 4. P. 495. https://doi.org/10.1002/biof.1363
  4. Ghosal A., Satoh H., Thomas P.E., Bush F., Moore D. Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cDNA-expressed human cytochrome P450 // Drug. Metab. Dispos. 1996. V. 24. № 9. P. 940.
  5. Constantin R.P., do Nascimento G.S., Constantin R.P., Salgueiro C.L., Bracht A., Ishii-Iwamoto E.L., Yamamoto N.S., Constantin J. Citrus flavanones affect hepatic fatty acid oxidation in rats by acting as prooxidant agents // BioMed Res. Int. 2013. V. 2013. Article 342973. https://doi.org/10.1155/2013/342973
  6. Shen N., Wang T., Gan Q., Liu S., Wang L., Lin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity // Food Chem. 2022. V. 383. Article 132531. https://doi.org/10.1016/j.foodchem.2022.132531
  7. Veitch N.C., Grayer R.J. Chalcones, dihydrochalcones, and aurones / Flavonoids: Chemistry, Biochemistry and Applications / Eds. Andersen O.M., Markham K.R. Boca Raton: CRC Press LLC, 2006. P. 1003.
  8. Khan M.K., Zill-E-Huma, Dangles O. A comprehensive review on flavanones, the major citrus polyphenols // J. Food Compos. Anal. 2014. V. 33. № 1. P. 85. https://doi.org/10.1016/j.jfca.2013.11.004
  9. Durazzo A., Lucarini M., Souto E.B., Cicala C., Caiazzo E., Izzo A.A., Novellino E., Santini A. Polyphenols: A concise overview on the chemistry, occurrence, and human health // Phytother. Res. 2019. V. 33. № 9. P. 2221. https://doi.org/10.1002/ptr.6419
  10. Регистр лекарственных средств России: Энциклопедия лекарств. Вып. 30 / Под ред. Вышковского Г.Л. M.: ВЕДАНТА, 2021. 1536 с.
  11. Zhang C., Bucheli P., Liang X., Lu Y. Citrus flavonoids as functional ingredients and their role in traditional Chinese medicine // Food. 2007. V. 1. № 2. P. 287.
  12. e Silva L.C.R.C., David J.M., Borges R. dos S.Q., Ferreira S.L.C., David J.P., dos Reis P.S., Bruns R.E. Determination of flavanones in orange juices obtained from different sources by HPLC/DAD // J. Anal. Methods Chem. 2014. V. 2014. Article 296838. https://doi.org/10.1155/2014/296838
  13. Hejniak J., Baranowska I., Stencel S., Bajkacz S. Separation and determination of selected polyphenols from medicinal plants // J. Chromatogr. Sci. 2019. V. 57. № 1. P. 17. https://doi.org/10.1093/chromsci/bmy075
  14. Zheng H., Zhen X.-T., Chena Y., Zhua S.-C., Ye L.-H., Yang S.-W., Wang Q.-Y., Cao J. In situ antioxidation-assisted matrix solid-phase dispersion microextraction and discrimination of chiral flavonoids from citrus fruit via ion mobility quadrupole time-of-flight high-resolution mass spectrometry // Food Chem. 2021. V. 343. Article 128422. https://doi.org/10.1016/j.foodchem.2020.128422
  15. Baranowska I., Hejniak J., Magiera S. LC-ESI-MS/MS method for the enantioseparation of six flavanones // Anal. Methods. 2017. V. 9. № 6. P. 1018. https://doi.org/10.1039/C6AY02952C
  16. Bajkacz S., Baranowska I., Buszewski B., Kowalski B., Ligor M. Determination of flavonoids and phenolic acids in plant materials using SLE-SPE-UHPLC-MS/MS method // Food Anal. Methods. 2018. V. 11. № 12. P. 35. https://doi.org/10.1007/s12161-018-1332-9
  17. Seo C.-S., Shin H.-K. Simultaneous analysis for quality control of traditional herbal medicine, gungha-tang, using liquid chromatography–tandem mass spectrometry // Molecules. 2022. V. 27. № 4. Article 1223. https://doi.org/10.3390/molecules27041223
  18. Zeng X., Su W., Zheng Y., Liu H., Li P., Zhang W., Liang Y., Bai Y., Peng W., Yao H. UFLC-Q-TOF-MS/MS-based screening and identification of flavonoids and derived metabolites in human urine after oral administration of Exocarpium Citri Grandis extract // Molecules. 2018. V. 23. № 4. Article 895. https://doi.org/10.3390/molecules23040895
  19. Aziz N., Khan M.N., Ali A., Khadim A., Muhsinah A.B., Uddin J., Musharraf S.G. Rapid analysis of flavonoids based on spectral library development in positive ionization mode using LC-HR-ESI-MS/MS // Arab. J. Chem. 2022. V. 15. № 4. Article 103734. https://doi.org/10.1016/j.arabjc.2022.103734
  20. Tine Y., Yang Y., Renucci F., Costa J., Wélé A., Paolini J. LC-MS/MS analysis of flavonoid compounds from Zanthoxylum zanthoxyloides extracts and their antioxidant activities // Nat. Prod. Commun. 2017. V. 12. № 12. P. 1865. https://doi.org/10.1177/1934578X1701201213
  21. Ribeiro I.A., Ribeiro M.H.L. Naringin and naringenin determination and control in grapefruit juice by a validated HPLC method // Food Control. 2008. V. 19. № 4. P. 432. https://doi.org/10.1016/j.foodcont.2007.05.007
  22. Ni H., Zhang S.F., Gao Q.F., Hu Y., Jiang Z.D., Chen F. Development and evaluation of simultaneous quantification of naringin, prunin, naringenin, and limonin in citrus juice // Food Sci. Biotechnol. 2015. V. 24. № 4. P. 1234. https://doi.org/10.1007/s10068-015-0159-z
  23. Musmade K.P., Trilok M., Dengale S.J., Bhat K., Reddy M.S., Musmade P.B., Udupa N. Development and validation of liquid chromatographic method for estimation of naringin in nanoformulation // J. Pharm. 2014. V. 2014. Article 864901. https://doi.org/10.1155/2014/864901
  24. Büyüktuncel E. Fast determination of naringin and hesperidin in natural and commercial citrus juices by HPLC method // Asian J. Chem. 2017. V. 29. № 11. P. 2384. https://doi.org/10.14233/ajchem.2017.20675
  25. Erlund I., Meririnne E., Alfthan G., Aro A. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice // J. Nutr. 2001. V. 131. № 2. P. 235. https://doi.org/10.1093/jn/131.2.235
  26. Xie F., Wulster-Radcliffe M., Hilt R., Kissinger C.B., Kissinger P.T. Determination of naringenin in rat plasma with the Culex® automated blood sampler coupled with liquid chromatography/electrochemistry // Asian J. Drug Metab. Pharmacokinet. 2004. V. 4. № 1. P. 29.
  27. Diaconu C., Vlase L., Cuciureanu M., Filip L. Assessment of flavonoids content in citrus juices using a LC/MS method // Farmacia. 2017. V. 65. № 1. P. 92.
  28. Perlatti B., Fernandes J.B., Silva M.F.G.F., Ardila J.A., Carneiro R.L., Souza B.H.S., Costa E.N., Eduardo W.I., Boiça Junior A.L., Forim M.R. Application of a quantitative HPLC-ESI-MS/MS method for flavonoids in different vegetables matrices // J. Braz. Chem. Soc. 2016. V. 27. № 3. P. 475. https://doi.org/10.5935/0103-5053.20150273
  29. Csuti A., Sik B., Ajtony Z. Measurement of naringin from citrus fruits by high-performance liquid chromatography – A review // Crit. Rev. Anal. Chem. 2022. https://doi.org/10.1080/10408347.2022.2082241
  30. Baira E., Dagla I., Siapi E., Zoumpoulakis P., Tsarbopoulos A., Simitzis P., Goliomytis M., Deligeorgis S.G., Skaltsounis A.-L., Gikas E. Development of a validated UHPLC-ESI (-)-HRMS methodology for the simultaneous quantitative determination of hesperidin, hesperetin, naringin, and naringenin in chicken plasma // Food Anal. Methods. 2019. V. 12. № 5. P. 1187. https://doi.org/10.1007/s12161-018-01420-4
  31. Ma Y., Zhang Y., Zhai Y., Zhu Z., Pan Y., Qian D., Su S., Fan X., Duan J. Development of a UPLC-TQ/MS approach for the determination of eleven bioactive components in Haizao Yuhu decoction plus-minus Haizao and Gancao drug combination after oral administration in a rat model of hypothyroidism // Molecules. 2017. V. 22. № 1. Article 7. https://doi.org/10.3390/molecules22010007
  32. Yuan J., Wei F., Luo X., Zhang M., Qiao R., Zhong M., Chen H., Yang W. Multi-component comparative pharmacokinetics in rats after oral administration of Fructus aurantia Extract, naringin, neohesperidin, and naringin-neohesperidin // Front. Pharmacol. 2020. V. 11. Article 933. https://doi.org/10.3389/FPHAR.2020.00933
  33. Chen T., Wu H., He Y., Pan W., Yan Z., Liao Y., Peng W., Gan L., Zhang Y., Su W., Yao H. Simultaneously quantitative analysis of naringin and its major human gut microbial metabolites naringenin and 3-(4'-hydroxyphenyl) propanoic acid via stable isotope deuterium-labeling coupled with RRLC-MS/MS Method // Molecules. 2019. V. 24. № 23. Article 4287. https://doi.org/10.3390/molecules24234287
  34. Zeng X., Su W., Liu H., Zheng Y., Chen T., Zhang W., Yan Z., Bai Y., Yao H. Simultaneous determination of rosuvastatin, naringin and naringenin in rat plasma by RRLC–MS/MS and its application to a pharmacokinetic drug interaction study // J. Chromatogr. Sci. 2018. V. 56. № 7. P. 611. https://doi.org/10.1093/chromsci/bmy034
  35. Meier B., Sprian D. Modern HPTLC – A perfect tool for quality control of herbals and their preparations // J. AOAC Int. 2010. V. 93. № 5. P. 1399. https://doi.org/10.1093/jaoac/93.5.1399
  36. Mikropoulou E.V., Petrakis E.A., Argyropoulou A., Mitakou S., Halabalaki M., Skaltsounis L.A. Quantification of bioactive lignans in sesame seeds using HPTLC densitometry: Comparative evaluation by HPLC-PDA // Food Chem. 2019. V. 288. P. 1. https://doi.org/10.1016/j.foodchem.2019.02.109
  37. Alam P., Alam A., Anwer Md.K., Alqasoumi S.I. Quantitative estimation of hesperidin by HPTLC in different varieties of citrus peels // Asian Pac. J. Trop. Biomed. 2014. V. 4. № 4. P. 262. https://doi.org/10.12980/APJTB.4.2014C1007
  38. Alam P., Siddiqui N.A., Al-Rehaily A.J., Alajmi M.F., Basudan O.A., Khan T.H. Stability-indicating densitometric high-performance thin-layer chromatographic method for the quantitative analysis of biomarker naringin in the leaves and stems of Rumex vesicarius L. // JPC – J. Planar Chromatogr. 2014. V. 27. № 3. P. 204. https://doi.org/10.1556/JPC.27.2014.3.10
  39. Li Y., Zhao C., Lu C., Zhou S., Tian G., He L., Bao Y., Fauconnier M.-L., Xiao H., Zheng J. Simultaneous determination of 14 bioactive citrus flavonoids using thin-layer chromatography combined with surface enhanced Raman spectroscopy // Food Chem. 2021. V. 338. Article 128115. https://doi.org/10.1016/j.foodchem.2020.128115
  40. Foudah A.I., Shakeel F., Alam P., Alqarni M.H., Abdel-Kader M.S., Alshehri S. A sustainable reversed-phase HPTLC method for the quantitative estimation of hesperidin in traditional and ultrasound-assisted extracts of different varieties of citrus fruit peels and commercial tablets // Agronomy. 2021. V. 11. № 9. Article 1744. https://doi.org/10.3390/agronomy11091744
  41. Przybylska A., Gackowski M., Koba M. Application of capillary electrophoresis to the analysis of bioactive compounds in herbal raw materials // Molecules. 2021. V. 26. № 8. Article 2135. https://doi.org/10.3390/molecules26082135
  42. Memon A.F., Solangi A.R., Memon S.Q., Mallah A., Memon N., Memon A.A. Simultaneous determination of quercetin, rutin, naringin, and naringenin in different fruits by capillary zone electrophoresis // Food. Anal. Methods. 2017. V. 10. № 1. P. 83. https://doi.org/10.1007/s12161-016-0552-0
  43. Şanlı S., Lunte C. Determination of eleven flavonoids in chamomile and linden extracts by capillary electrophoresis // Anal. Methods. 2014. V. 6. № 11. P. 3858. https://doi.org/10.1039/C3AY41878B
  44. Memon A.F., Solangi A.R., Memon S.Q., Mallah A., Memon N. Quantitative separation of hesperidin, chrysin, epicatechin, epigallocatechin gallate, and morin using ionic liquid as a buffer additive in capillary electrophoresis // Electrophoresis. 2018. V. 39. № 13. P. 1606. https://doi.org/10.1002/elps.201700421
  45. Sawalha S.M.S., Arráez-Román D., Segura-Carretero A., Fernández-Gutiérrez A. Quantification of main phenolic compounds in sweet and bitter orange peel using CE–MS/MS // Food Chem. 2009. V. 116. № 2. P. 567. https://doi.org/10.1016/j.foodchem.2009.03.003
  46. Wu T., Guan Y., Ye J. Determination of flavonoids and ascorbic acid in grapefruit peel and juice by capillary electrophoresis with electrochemical detection // Food Chem. 2007. V. 100. № 4. P. 1573. https://doi.org/10.1016/j.foodchem.2005.12.042
  47. Peng Y., Liu F., Ye J. Quantitative and qualitative analysis of flavonoid markers in Frucus aurantii of different geographical origin by capillary electrophoresis with electrochemical detection // J. Chromatogr. B. 2006. V. 830. № 2. P. 224. https://doi.org/10.1016/j.jchromb.2005.10.043
  48. Ma F., Zhang W., Wang J., Zhang L., Chen G. Fabrication of a carbon nanotube-polyurethane composite electrode by in situ polyaddition for use in amperometric detection in capillary electrophoresis // Microchim. Acta. 2016. V. 183. № 9. P. 2579. https://doi.org/10.1007/s00604-016-1900-x
  49. Wang X., Wang J., Zhang L., Chen G. Carbon nanotube-phenolic resin composite electrode fabricated by far infrared-assisted crosslinking for enhanced amperometric detection // Electroanalysis. 2019. V. 31. № 4. P. 756. https://doi.org/10.1002/elan.201800604
  50. Bachmann S., Huck C.W., Bakry R., Bonn G.K. Analysis of flavonoids by CE using capacitively coupled contactless conductivity detection // Electrophoresis. 2007. V. 28. № 13. P. 799. https://doi.org/10.1002/elps.200600228
  51. Tsimogiannis D., Samiotaki M., Panayotou G., Oreopoulou V. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS // Molecules. 2007. V. 12. № 3. P. 593. https://doi.org/10.3390/12030593
  52. Mazzaferro L.S., Breccia J.D. Quantification of hesperidin in citrus-based foods using a fungal diglycosidase // Food Chem. 2012. V. 134. № 4. P. 2338. https://doi.org/10.1016/j.foodchem.2012.03.107
  53. Kuntić V., Pejić N., Mićić S. Direct spectrophotometric determination of hesperidin in pharmaceutical preparations // Acta Chim. Slov. 2012. V. 59. № 2. P. 436.
  54. Bennani I., Chentoufi M.A., El Otmani I.S., Cheikh A., Bamou N., El Karbane M., Bouatia M. Development and validation of two spectrophotometric methods for simultaneous determination of diosmine and hesperidin in mixture and their applications // J. App. Pharm. Sci. 2020. V. 10. № 7. P. 100.
  55. Srilatha D., Nasare M., Nagasandhya B., Prasad V., Diwan P. Development and validation of UV spectrophotometric method for simultaneous estimation of hesperidin and diosmin in the pharmaceutical dosage form // ISRN Spectroscopy. 2013. V. 2013. Article 534830. https://doi.org/10.1155/2013/534830
  56. Jha D.K., Shah D.S., Talele S.R., Amin P.D. Correlation of two validated methods for the quantification of naringenin in its solid dispersion: HPLC and UV spectrophotometric methods // SN Appl. Sci. 2020. V. 2. № 4. Article 698. https://doi.org/10.1007/s42452-020-2536-3
  57. Sahu A.K., Jain V. Quantification of naringenin encapsulated in solid lipid nanoparticles by validated UV-spectroscopy method // Planta Med. 2015. V. 81. № 5. P. 13. https://doi.org/10.1055/s-0035-1545230
  58. Mohamed D., Tawakkol S.M. Fluorimetric determination of diosmin and hesperidin in combined dosage forms and in plasma through complex formation with terbium // Bull. Fac. Pharm. Cairo Univ. 2013. V. 51. № 1. P. 81. https://doi.org/10.1016/j.bfopcu.2012.12.001
  59. Obendorf D., Reichart E. Determination of hesperidin by cathodic stripping voltammetry in orange juice and helopyrin, a phytopharmaceutical preparation // Electroanalysis. 1995. V. 7. № 11. P. 1075. https://doi.org/10.1002/elan.1140071115
  60. Reichart E., Obendorf D. Determination of naringin in grapefruit juice by cathodic stripping differential pulse voltammetry at the hanging mercury drop electrode // Anal. Chim. Acta. 1998. V. 360. № 1–3. P. 179. https://doi.org/10.1016/S0003-2670(97)00704-6
  61. Temerk Y.M., Ibrahim M.S., Kotb M. Square-wave cathodic adsorptive stripping voltammetric determination of 3-hydroxyflavone, morin and hesperidin in bulk form and biological fluids in absence and presence of Cu(II) // J. Braz. Chem. Soc. 2011. V. 22. № 11. P. 2056. https://doi.org/10.1590/S0103-50532011001100006
  62. de Souza Gil E., Enache A.T., Oliveira-Brett A.M. Anodic behaviour of flavonoids orientin, eriodictyol and robinin at a glassy carbon electrode // Electroanalysis. 2012. V. 24. № 7. P. 1576. https://doi.org/10.1002/elan.201200211
  63. David I.G., Numan N., Buleandră M., Popa D.-E., Lițescu S.C., Riga S., Ciobanu A.M. Rapid voltammetric screening method for the assessment of bioflavonoid content using the disposable bare pencil graphite electrode // Chemosensors. 2021. V. 9. № 11. Article 323. https://doi.org/10.3390/chemosensors9110323
  64. Šafranko S., Stanković A., Asserghine A., Jakovljević M., Hajra S., Nundy S., Medvidović-Kosanović M., Jokić S. Electroactivated disposable pencil graphite electrode – new, cost-effective, and sensitive electrochemical detection of bioflavonoid hesperidin // Electroanalysis. 2021. V. 33. № 4. P. 1063. https://doi.org/10.1002/elan.202060511
  65. David I.G., Lițescu S.C., Popa D.E., Buleandra M., Iordache L., Albu C., Alecu A., Penu R.L. Voltammetric analysis of naringenin at a disposable pencil graphite electrode – Application to polyphenol content determination in citrus juice // Anal. Methods. 2018. V. 10. № 48. P. 5763. https://doi.org/10.1039/C8AY02281J
  66. David I.G., Lițescu S.C., Moraru R., Albu C., Buleandra M., Popa D.E., Riga S., Ciobanu A.M., Noor H. Electroanalysis of naringin at electroactivated pencil graphite electrode for the assessment of polyphenolics with intermediate antioxidant power // Antioxidants. 2022. V. 11. № 12. Article 2306. https://doi.org/10.3390/antiox11122306
  67. Yiğit A., Yardım Y., Şentürk Z. Square-wave adsorptive stripping voltammetric determination of hesperidin using a boron-doped diamond electrode // J. Anal. Chem. 2020. V. 75. № 5. P. 653. https://doi.org/10.1134/S1061934820050184
  68. Cai W.-L., Liu L., Liao X.-Q., Tao K.-L., Feng F., Yang G.-J. Determination of eriodictyol by a modified multiwalled carbon nanotube glassy carbon electrode // Anal. Lett. 2016. V. 49. № 10. P. 1502. https://doi.org/10.1080/00032719.2015.1113423
  69. Xia H.-Q., Gu T., Fan R., Zeng J. Comparative investigation of bioflavonoid electrocatalysis in 1D, 2D, and 3D carbon nanomaterials for simultaneous detection of naringin and hesperidin in fruits // RSC Adv. 2022. V. 12. № 11. P. 6409. https://doi.org/10.1039/D1RA07217J
  70. Sims M.J., Li Q., Kachoosangi R.T., Wildgoose G.G., Compton R.G. Using multiwalled carbon nanotube modified electrodes for the adsorptive striping voltammetric determination of hesperidin // Electrochim. Acta. 2009. V. 54. № 22. P. 5030. https://doi.org/10.1016/j.electacta.2008.10.056
  71. Wang W., Gao J., Wang L., Ye B. Electrochemical behavior of naringenin and its sensitive determination based on a single-walled carbon nanotube modified electrode // Anal. Methods. 2015. V. 7. № 20. P. 8847. https://doi.org/10.1039/C5AY01782C
  72. Yao S., Cai W., Liu L., Liao X., Tao K., Feng F., Yang G. Electrochemical behavior of eriocitrin and highly sensitive determination based on an electrochemically re-duced graphene oxide modified glassy carbon electrode // Anal. Methods. 2016. V. 8. № 18. P. 3722. https://doi.org/10.1039/C6AY00064A
  73. Wu J., Wang L., Wang Q., Zou L., Ye B. The novel voltammetric method for determination of hesperetin based on a sensitive electrochemical sensor // Talanta. 2016. V. 150. P. 61. https://doi.org/10.1016/j.talanta.2015.12.026
  74. Beluomini M.A., Stradiotto N.R., Boldrin M.V. Electrosynthesis of three-dimensional nanoporous nickel on screen-printed electrode used for the determination of narirutin in citrus wastewater // Food Chem. 2021. V. 353. Article 129427. https://doi.org/10.1016/j.foodchem.2021.129427
  75. Beluomini M.A., Stradiotto N.R., Zanoni M.V.B. Simultaneous detection of hesperidin and narirutin in residual water using nanoporous platinum electrosynthesized by alloying-dealloying mechanism // J. Electroanal. Chem. 2022. V. 904. Article 115866. https://doi.org/10.1016/j.jelechem.2021.115866
  76. Ziyatdinova G., Yakupova E., Davletshin R. Voltammetric determination of hesperidin on the electrode modified with SnO2 nanoparticles and surfactants // Electroanalysis. 2021. V. 33. № 12. P. 2417. https://doi.org/10.1002/elan.202100405
  77. Sun D., Wang F., Wu K., Chen J., Zhou Y. Electrochemical determination of hesperidin using mesoporous SiO2 modified electrode // Microchim. Acta. 2009. V. 167. № 1. P. 35. https://doi.org/10.1007/s00604-009-0200-0
  78. Wang L., Wang Q., Sheng K., Li G., Ye B. A new graphene nanocomposite modified electrode as efficient voltammetric sensor for determination of eriocitrin // J. Electroanal. Chem. 2017. V. 785. P. 96. https://doi.org/10.1016/j.jelechem.2016.11.061
  79. Zhang Y., Liu Z., Zou L., Ye B. A new voltammetry sensor platform for eriocitrin based on CoS2-MoS2-P-DDA-GR nanocomposite // Talanta. 2018. V. 189. P. 345. https://doi.org/10.1016/j.talanta.2018.07.004
  80. Teradal N.L., Satpati A.K., Seetharamappa J. A facile one-pot hydrothermal synthesis of tin sulfide-decorated reduced graphene oxide nanoribbons and its sensing application for a flavanone naringenin // J. Electroanal. Chem. 2017. V. 797. P. 89. https://doi.org/10.1016/j.jelechem.2017.05.022
  81. Manasa G., Mascarenhas R.J., Bhakta A.K., Mekhalif Z. MWCNT/Nileblue heterostructured composite electrode for flavanone naringenin quantification in fruit juices // Electroanalysis. 2020. V. 32. № 5. P. 939. https://doi.org/10.1002/elan.201900573
  82. Manasa G., Mascarenhas R.J., Bhakta A.K., Mekhalif Z. Nano-graphene-platelet/Brilliant-green composite coated carbon paste electrode interface for electrocatalytic oxidation of flavanone hesperidin // Microchem. J. 2021. V. 160. Article 105768. https://doi.org/10.1016/j.microc.2020.105768
  83. Ziyatdinova G., Yakupova E., Ziganshina E., Budnikov H. First order derivative voltammetry on the in situ surfactant modified electrode for naringin quantification // Electroanalysis. 2019. V. 31. № 11. P. 2130. https://doi.org/10.1002/elan.201900257
  84. Gao Y., Wu X., Wang H., Lu W., Guo M. Highly sensitive detection of hesperidin using AuNPs/rGO modified glassy carbon electrode // Analyst. 2018. V. 143. № 1. P. 297. https://doi.org/10.1039/C7AN01706E
  85. Ziyatdinova G., Yakupova E., Guss E., Budnikov H. The selective electrochemical sensing of naringin using electropolymerized ellagic acid film // J. Electrochem. Soc. 2020. V. 167. № 10. Article 107502. https://doi.org/10.1149/1945-7111/ab9280
  86. Zhupanova A., Guss E., Ziyatdinova G., Budnikov H. Simultaneous voltammetric determination of flavanones using an electrode based on functionalized single-walled carbon nanotubes and polyaluminon // Anal. Lett. 2020. V. 53. № 13. P. 2170. https://doi.org/10.1080/00032719.2020.1732402
  87. Ma X.-L., Chen R.-Y., Zheng X., Chen X., Chen Z. Preparation and application of naringin sensor based on molecularly imprinting technique // Chinese J. Anal. Chem. 2010. V. 38. № 1. P. 100. https://doi.org/10.3724/SP.J.1096.2010.00100
  88. Sun B., Hou X., Li D., Gou Y., Hu F., Li W., Shi X. Electrochemical sensing and high selective detection of hesperidin with molecularly imprinted polymer based on ultrafine activated carbon // J. Electrochem. Soc. 2019. V. 166. № 15. P. B1644. https://doi.org/10.1149/2.1141915jes
  89. Ensafi A.A., Karbalaei S., Heydari–Bafrooei E., Rezaei B. Biosensing of naringin in marketed fruits and juices based on its interaction with DNA // J. Iran. Chem. Soc. 2016. V. 13. № 1. P. 19. https://doi.org/10.1007/s13738-015-0707-8
  90. Tığ G.A., Bolat E.Ö., Zeybek B., Pekyardımcı Ş. Hesperidin-dsDNA interaction based on electrochemically reduced graphene oxide and poly-(2,6-pyridinedicarboxylic acid) modified glassy carbon electrode // Hacettepe J. Biol. Chem. 2016. V. 44. № 4. P. 487. https://doi.org/10.15671/HJBC.2016.129
  91. Park S., Song Y.J., Han J.-H., Boo H., Chung T.D. Structural and electrochemical features of 3D nanoporous platinum electrodes // Electrochim. Acta. 2010. V. 55. № 6. P. 2029. https://doi.org/10.1016/j.electacta.2009.11.026
  92. Ziyatdinova G., Guss E., Yakupova E. Electrochemical sensors based on the electropolymerized natural phenolic antioxidants and their analytical application // Sensors. 2021. V. 21. № 24. Article 8385. https://doi.org/10.3390/s21248385
  93. Ziyatdinova G., Kozlova E., Budnikov H. Polyquercetin/MWNT-modified electrode for the determination of natural phenolic antioxidants // Electroanalysis. 2017. V. 29. № 11. P. 2610. https://doi.org/10.1002/elan.201700440
  94. Ziyatdinova G., Kozlova E., Budnikov H. Poly(gallic acid)/MWNT-modified electrode for the selective and sensitive voltammetric determination of quercetin in medicinal herbs // J. Electroanal. Chem. 2018. V. 821. P. 73. https://doi.org/10.1016/j.jelechem.2017.12.071
  95. Ziyatdinova G., Zhupanova A., Davletshin R. Simultaneous determination of ferulic acid and vanillin in vanilla extracts using voltammetric sensor based on electropolymerized bromocresol purple // Sensors. 2022. V. 22. № 1. Article 288. https://doi.org/10.3390/s22010288
  96. Forzato C., Vida V., Berti F. Biosensors and sensing systems for rapid analysis of phenolic compounds from plants: a comprehensive review // Biosensors. 2020. V. 10. № 9. Article 105. https://doi.org/10.3390/bios10090105
  97. Sousa C.S., Lima K.C.M.S., Botelho C.N., Pereira N.M., Fernandes R.N., Silva G.G., Damos F.S., Luz R.C.S. Photoelectrochemical sensor for determination of naringin at low oxidation potential using a modified FTO electrode with cadmium sulfide and titanium dioxide sensitized with chloroprotoporphyrin IX iron(III) // J. Solid State Electrochem. 2020. V. 24. № 8. P. 1715. https://doi.org/10.1007/s10008-020-04568-4

Copyright (c) 2023 Э.Н. Якупова, Г.К. Зиятдинова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies