Применение металлоорганических каркасных полимеров в высокоэффективной жидкостной хроматографии

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Представлен критический обзор экспериментальных исследований эффективности разделения различных групп химических соединений в условиях высокоэффективной жидкостной хроматографии при использовании в качестве неподвижной фазы металлоорганических каркасных полимеров (МОКП) или композиционных материалов с МОКП. Продемонстрированы широкие возможности применения МОКП в высокоэффективной жидкостной хроматографии, которые могут успешно конкурировать с классическими решениями, особенно при определении низкомолекулярных соединений и оптических изомеров. Одним из перспективных вариантов использования этого класса материалов является разработка монолитных сепарационных колонок и гибридных сорбентов, нивелирующих недостатки сорбентов на основе чистых МОКП.

Об авторах

И. Х. Шайхутдинов

Самарский государственный медицинский университет

Email: i.h.shajhutdinov@samsmu.ru
Россия, 443099, Самара, Чапаевская ул., 89

Т. К. Рязанова

Самарский государственный медицинский университет

Email: t.k.ryazanova@samsmu.ru
Россия, 443099, Самара, Чапаевская ул., 89

Л. В. Лимарева

Самарский государственный медицинский университет

Email: t.k.ryazanova@samsmu.ru
Россия, 443099, Самара, Чапаевская ул., 89

А. В. Соколов

Самарский государственный медицинский университет

Автор, ответственный за переписку.
Email: t.k.ryazanova@samsmu.ru
Россия, 443099, Самара, Чапаевская ул., 89

Список литературы

  1. Moldoveanu S., David V. Essentials in Modern HPLC Separations. Elsevier Inc., 2013. 532 p.
  2. Fanali S., Poole C.F., Haddad P.R., Riekkola M.L. Liquid Chromatography. Fundamentals and Instrumentation. 2nd Ed. Elsevier Inc., 2017. 784 p.
  3. Kromidas S. The HPLC Expert: Possibilities and Limitations of Modern High Performance Liquid Chromatography. Wiley, 2016.
  4. Handbook of Pharmaceutical Analysis by HPLC. V. 1–6. Academic Press, 2005.
  5. Kazakevich Y.V., LoBrutto R. HPLC for Pharmaceutical Scientists. 1st Ed. Hoboken, N.J: Wiley-Interscience, 2007. 1140 p.
  6. Майер В.Р. Практическая высокоэффективная жидкостная хроматография. М.: Техносфера, 2017. 394 с.
  7. Cserhati T., Valko K. Chromatographic Determination of Molecular Interactions Applications in Biochemistry, Chemistry, and Biophysics. CRC Press, 1993. 356 p.
  8. Farha O.K., Eryazici I., Jeong N.C., Hauser B.G., Wilmer C.E., Sarjeant A.A., Snurr R.Q., Nguyen S.T., Yazaydın A.Ö., Hupp J.T. Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? // J. Am. Chem. Soc. 2012. V. 13. № 36. P. 15016.
  9. Paz F.A.A., Klinowski J., Vilela S.M.F., Tomé J.P.C., Cavaleiro J.A.S., Rocha J. Ligand design for functional metal–organic frameworks // Chem. Soc. Rev. 2012 V. 41. № 3. P. 1088.
  10. Cheetham A.K., Férey G., Loiseau T. Open-framework inorganic materials // Angew. Chem. Int. Ed. (Engl.). 1999. V. 38. № 22. P. 3268.
  11. Valtchev V., Mintova S., Tsapatsis M. Ordered Porous Solids. 1st Ed. Elsevier Inc., 2008. 788 p.
  12. Furukawa H., Cordova K.E., O’Keeffe M., Yaghi O.M. The chemistry and applications of metal-organic frameworks // Science. 2013. V. 341 № 6149. Article 1230444.
  13. Corella-Ochoa M.N., Tapia J.B., Rubin H.N., Lillo V., González-Cobos J., Núñez-Rico J.L., Balestra S.R.G., Almora-Barrios N., Lledós M., Güell-Bara A., Cabezas-Giménez J., Escudero-Adán E.C., Vidal-Ferran A., Calero S., Reynolds M., Martí-Gastaldo C., Galán-Mascarós J.R. Homochiral metal–organic frameworks for enantioselective separations in liquid chromatography // J. Am. Chem. Soc. 2019. V. 141. № 36. P. 14306.
  14. Yu Y., Ren Y., Shen W., Deng H., Gao Z. Applications of metal-organic frameworks as stationary phases in chromatography // Trends Anal. Chem. 2014. V. 50. P. 33.
  15. Li H., Wang K., Sun Y., Lollar C.T., Li J., Zhou H.C. Recent advances in gas storage and separation using metal–organic frameworks // Materials Today. 2019. V. 21. № 2. P. 108.
  16. Wang Z., Cohen S.M. Postsynthetic modification of metal-organic frameworks // Chem. Soc. Rev. 2009. V. 38. № 5. P. 1315.
  17. Martens J.A., Jacobs P.A. Ch. 14. Introduction to acid catalysis with zeolites in hydrocarbon reactions / Studies in Surface Science and Catalysis / Eds. van Bekkum H., Flanigen E.M., Jacobs P.A., Jansen J.C., Elsevier, 2001. P. 633. (Introduction to Zeolite Science and Practice. V. 137).
  18. Yusuf K., Aqel A., ALOthman Z. Metal-organic frameworks in chromatography // J. Chromatogr A. 2014. V. 1348. P. 1.
  19. Hartlieb K.J., Holcroft J.M., Moghadam P.Z., Vermeulen N.A., Algaradah M.M. CD-MOF: A versatile separation medium // J. Am. Chem. Soc. 2016. V. 138. № 7. P. 2292.
  20. Yang C.-X., Zheng Y.-Z., Yan X.-P. γ-Cyclodextrin metal–organic framework for efficient separation of chiral aromatic alcohol // RSC Adv. 2017. V. 7. № 58. P. 36297.
  21. Ke D., Feng J.-F., Wu D., Hou J.-B., Zhang X.-Q., Li B.-J., Zhang S. Facile stabilization of a cyclodextrin metal–organic framework under humid environment via hydrogen sulfide treatment // RSC Adv. 2019. V. 9. № 32. P. 18271.
  22. Alaerts L., Maes M., Giebeler L., Jacobs P.A., Martens J.A., Denayer J.F.M., Kirschhock C.E., De Vos D.E. Selective adsorption and separation of ortho-substituted alkylaromatics with the microporous aluminum terephthalate MIL-53 // J. Am. Chem. Soc. 2008. V. 130. № 43. P. 14170.
  23. Alaerts L., Maes M., Veen M.A. van der, Jacobs P.A., Vos D.E.D. Metal–organic frameworks as high-potential adsorbents for liquid-phase separations of olefins, alkylnaphthalenes and dichlorobenzenes // Phys. Chem. Chem. Phys. 2009. V. 11 № 16. P. 2903.
  24. Moreira M.A., Santos J.C., Ferreira A.F.P., Loureiro J.M., Rodrigues A.E. Influence of the eluent in the MIL-53(Al) selectivity for xylene isomers separation // Ind. Eng. Chem. Res. 2011. V. 50. № 12. P. 7688.
  25. Yang C.-X., Liu S.-S., Wang H.-F., Wang S.-W., Yan X.-P. High-performance liquid chromatographic separation of position isomers using metal–organic framework MIL-53(Al) as the stationary phase // Analyst. 2011. V. 137. № 1. P. 133.
  26. Liu S.-S., Yang C.-X., Wang S.-W., Yan X.-P. Metal–organic frameworks for reverse-phase high-performance liquid chromatography // Analyst. 2012. V. 137. № 4. P. 816.
  27. Shu L., Chen S., Zhao W.-W., Bai Y., Ma X.-C., Li X.-X., Li J.R., Somsundaran P. High-performance liquid chromatography separation of phthalate acid esters with a MIL-53(Al)-packed column // J. Sep. Sci. 2016. V. 39. № 16. P. 3163.
  28. Pérez-Cejuela H.M., Carrasco-Correa E.J., Shahat A., Simó-Alfonso E.F., Herrero-Martínez J.M. Incorporation of metal-organic framework amino-modified MIL-101 into glycidyl methacrylate monoliths for nano LC separation // J. Sep. Sci. 2019. V. 42. № 4. P. 834.
  29. Kaskel S. The Chemistry of Metal-Organic Frameworks, 2 Volume Set: Synthesis, Characterization, and Applications. John Wiley & Sons, 2016. 899 p.
  30. Ahmad R., Wong-Foy A.G., Matzger A.J. Microporous coordination polymers as selective sorbents for liquid chromatography // Langmuir. 2009. V. 25. № 20. P. 11977.
  31. Centrone A., Santiso E.E., Hatton T.A. Separation of chemical reaction intermediates by metal-organic frameworks // Small. 2011. V. 22. № 16. P. 2356.
  32. Ameloot R., Liekens A., Alaerts L., Maes M., Galarneau A., Coq B., Desmet G., Sels B.F., Denayer J.F.M., De Vos D.E. Silica–MOF composites as a stationary phase in liquid chromatography // Eur. J. Inorg. Chem. 2010. V. 24. P. 3735.
  33. Ahmed A., Hodgson N., Barrow M., Clowes R., Robertson C.M., Steiner A., McKeown P., Bradshaw D., Myers P., Zhang H. Macroporous metal–organic framework microparticles with improved liquid phase separation // J. Mater. Chem. A. 2014. V. 2. № 24. P. 9085.
  34. Ahmed A., Forster M., Clowes R., Bradshaw D., Myers P., Zhang H. Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation // J. Mater. Chem. A. 2013. V. 1. № 1. P. 3276.
  35. Nuzhdin A.L., Shalygin A.S., Artiukha E.A., Chibiryaev A.M., Bukhtiyarova G.A., Martyanov O.N. HKUST-1 silica aerogel composites: novel materials for the separation of saturated and unsaturated hydrocarbons by conventional liquid chromatography // RSC Adv. 2016. V. 6. № 67. P. 62501.
  36. Chen D.-H., Zhuo C., Wen Y.-H., Lin L., Zhang Y.-X., Hu S.-M., Fu R.-B., Wu X.-T. Porous metal–organic frameworks based on 3,6-bis(4-benzoic acid)-N-(4-benzoic acid)carbazole for HPLC separation of small organic molecules // Mater. Chem. Front. 2018. V. 2. № 8. P. 1508.
  37. Aghajanloo M., Rashidi A. Synthesis of zinc-organic frameworks nano adsorbent and their application for methane adsorption // J. Chem. Eng. Process Technol. 2014. V. 5. № 5. Article 1000203.
  38. Ming Y., Purewal J., Yang J., Xu C., Soltis R., Warner J., Veenstra M., Gaab M., Müller U., Siegel D.J. Kinetic stability of MOF-5 in humid environments: Impact of powder densification, humidity level, and exposure time // Langmuir. 2015. V. 31. № 17. P. 4988.
  39. Jia Z., Wu G., Wu D., Tong Z., Winston Ho W.S. Preparation of ultra-stable ZIF-8 dispersions in water and ethanol // J. Porous. Mater. 2017. V. 24. № 6. P. 1655.
  40. Fu Y.-Y., Yang C.-X., Yan X.-P. Fabrication of ZIF-8@SiO2 core-shell microspheres as the stationary phase for high-performance liquid chromatography // Chemistry. 2013. V. 19. № 40. P. 13484.
  41. Qu Q., Xuan H., Zhang K., Chen X., Ding Y., Feng S., Xu Q. Core-shell silica particles with dendritic pore channels impregnated with zeolite imidazolate framework-8 for high performance liquid chromatography separation // J. Chromatogr. A. 2017. V. 1505. P. 63.
  42. Hawes C.S., Nolvachai Y., Kulsing C., Knowles G.P., Chaffee A.L., Marriott P.J., Batten S.R., Turner D.R. Metal–organic frameworks as stationary phases for mixed-mode separation applications // Chem. Commun. 2014. V. 50. № 28. P. 3735.
  43. Férey G., Mellot-Draznieks C., Serre C., Millange F., Dutour J., Surblé S., Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area // Science. 2005. V. 309. № 5743. P. 2040.
  44. Hong D.-Y., Hwang Y.K., Serre C., Férey G., Chang J.-S. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis // Adv. Funct. Mater. 2009. V. 19. № 10. P. 1537.
  45. Henschel A., Gedrich K., Kraehnert R., Kaskel S. Catalytic properties of MIL-101 // RSC Chem. Commun. 2008. V. 35. P. 4192.
  46. Yang C.-X., Yan X.-P. Metal–organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics // Anal. Chem. 2011. V. 83. № 18. P. 7144.
  47. Fu Y.-Y., Yang C.-X., Yan X.-P. Control of the coordination status of the open metal sites in metal–organic frameworks for high performance separation of polar compounds // Langmuir. 2013. V. 28. № 17. P. 6794.
  48. Yang F., Yang C.-X., Yan X.-P. Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols // Talanta. 2015. V. 137. P. 136.
  49. Hailili R., Wang L., Qv J., Yao R., Zhang X.-M., Liu H. Planar Mn4O cluster homochiral metal–organic framework for HPLC separation of pharmaceutically important (±)-ibuprofen racemate // Inorg. Chem. 2015. V. 54. № 8. P. 3713.
  50. Fu Y.-Y., Yang C.-X., Yan X.-P. Metal-organic framework MIL-100(Fe) as the stationary phase for both normal-phase and reverse-phase high performance liquid chromatography // J. Chromatogr. A. 2013. V. 1274. P. 137.
  51. Qin W., Silvestre M.E., Li Y., Franzreb M. High performance liquid chromatography of substituted aromatics with the metal-organic framework MIL-100(Fe): Mechanism analysis and model-based prediction // J. Chromatogr. A. 2016. V. 1432. P. 84.
  52. Yan Z., Zhang W., Gao J., Lin Y., Li J., Lin Z., Zhang L. Reverse-phase high performance liquid chromatography separation of positional isomers on a MIL-53(Fe) packed column // RSC Adv. 2015. V. 5. № 50. P. 40094.
  53. Liu M., Jing Y., Zhang L., Zhou Y., Yan H., Song Y., Qiao X. MOF-74@SiO2 core-shell stationary phase: Preparation and its applications for mixed-mode chromatographic separation // J. Chromatogr. B. 2021. V. 1163. Article 122506.
  54. Van der Perre S. Liekens A., Bueken B., De Vos D.E., Baron G.V., Denayer J.F. Separation properties of the MIL-125(Ti) metal-organic framework in high-performance liquid chromatography revealing cis/trans selectivity // J. Chromatogr. A. 2016. V. 1469. P. 68.
  55. Alaerts L., Kirschhock C.E.A., Maes M., van der Veen M.A., Finsy V., Depla A., Martens J.A., Baron G.V., Jacobs P.A., Denayer J.F., De Vos D.E. Selective adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47 // Angew. Chem. Int. Ed. 2007. V. 46. № 23. P. 4293.
  56. Maes M., Vermoortele F., Alaerts L., Couck S., Kirschhock C.E.A., Denayer J.F.M., De Vos D.E. Separation of styrene and ethylbenzene on metal–organic frameworks: Analogous structures with different adsorption mechanisms // J. Am. Chem. Soc. 2010. V. 132. № 43. P. 15277.
  57. Howarth A.J., Liu Y., Li P., Li Z., Wang T.C., Hupp J.T., Farha O.K. Chemical, thermal and mechanical stabilities of metal–organic frameworks // Nat. Rev. Mater. 2016. V. 1. № 3. P. 1.
  58. Qin W.W., Silvestre M.E., Franzreb M. Magnetic microparticles@UiO-67 core-shell composites as a novel stationary phase for high performance liquid chromatography // Appl. Mech. Mater. 2015. V. 703. P. 73.
  59. Ding M., Yang L., Zeng J., Yan X., Wang Q. Orderly MOF-assembled hybrid monolithic stationary phases for nano-flow HPLC // Anal. Chem. 2020. V. 92. № 24. P. 15757.
  60. Fu Y.-Y., Yang C.-X., Yan X.-P. Incorporation of metal–organic framework UiO-66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules // Chem. Commun. 2013. V. 49. № 64. P. 7162.
  61. Zhao W.-W., Zhang C.-Y., Yan Z.-G., Bai L.-P., Wang X., Huang H., Zhou Y.Y., Xie Y., Li F.S., Li J.R. Separations of substituted benzenes and polycyclic aromatic hydrocarbons using normal- and reverse-phase high performance liquid chromatography with UiO-66 as the stationary phase // J. Chromatogr. A. 2013. V. 1370. P. 121.
  62. Yan Z., Zheng J., Chen J., Tong P., Lu M., Lin Z., Zhang L. Preparation and evaluation of silica-UiO-66 composite as liquid chromatographic stationary phase for fast and efficient separation // J. Chromatogr. A. 2014. V. 1366. P. 45.
  63. Qin W., Silvestre M.E., Brenner-Weiss G., Wang Z., Schmitt S., Hubner J., Franzreb M. Insights into the separation performance of MOFs by high-performance liquid chromatography and in-depth modelling // Sep. Purif. Technol. 2015. V. 156. P. 249.
  64. Zhang X., Han Q., Ding M. One-pot synthesis of UiO-66@SiO2 shell–core microspheres as stationary phase for high performance liquid chromatography // RSC Adv. 2014. V. 5. № 2. P. 1043.
  65. Peristyy A., Nesterenko P.N., Das A., D’Alessandro D.M., Hilder E.F., Arrua R.D. Flow-dependent separation selectivity for organic molecules on metal–organic frameworks containing adsorbents // Chem. Commun. 2016. V. 52. № 30. P. 5301.
  66. Arrua R.D., Peristyy A., Nesterenko P.N., Das A., D’Alessandro D.M., Hilder E.F. UiO-66@SiO2 core–shell microparticles as stationary phases for the separation of small organic molecules // Analyst. 2017. V. 142. № 3. P. 517.
  67. Li X., Li B., Liu M., Zhou Y., Zhang L., Qiao X. Core-shell metal-organic frameworks as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase chromatography // ACS Appl. Mater. Interfaces. 2019. V. 11. № 10. P. 10320.
  68. Tanaka K., Muraoka T., Hirayama D., Ohnish A. Highly efficient chromatographic resolution of sulfoxides using a new homochiral MOF–silica composite // Chem. Commun. 2012. V. 48. № 68. P. 8577.
  69. Zhang M., Zhang J.-H., Zhang Y., Wang B.-J., Xie S.-M., Yuan L.-M. Chromatographic study on the high performance separation ability of a homochiral [Cu2(d-Cam)2(4,4'-bpy)]n based-column by using racemates and positional isomers as test probes // J. Chromatogr. A. 2014. V. 1325. P. 16370.
  70. Xie S., Hu C., Li L., Zhang J., Fu N., Wang B., Yuan L. Homochiral metal-organic framework for HPLC separation of enantiomers // Microchem. J. 2018. V. 139. P. 487.
  71. Hu C., Li L., Yang N., Zhang Z., Xie S., Yuan L. Chiral metal-organic framework [Cu(S -mal)(bpy)] n used for separation of racemates in high performance liquid chromatography // Acta Chimica Sinica. 2016. V. 74. P. 819.
  72. Tanaka K., Kawakita T., Morawiak M., Urbanczyk-Lipkowska Z. A novel homochiral metal–organic framework with an expanded open cage based on (R)-3,3'-bis(6-carboxy-2-naphthyl)-2,2'-dihydroxy-1,1'-binaphthyl: Synthesis, X-ray structure and efficient HPLC enantiomer separation // CrystEngComm. 2019. V. 21. № 3. P. 487.
  73. Zhang M., Pu Z.-J., Chen X.-L., Gong X.-L., Zhu A.-X., Yuan L.-M. Chiral recognition of a 3D chiral nanoporous metal–organic framework // Chem. Commun. 2013. V. 49. № 45. P. 5201.
  74. Zhang M., Xue X.-D., Zhang J.-H., Xie S.-M., Zhang Y., Yuan L.-M. Enantioselective chromatographic resolution using a homochiral metal–organic framework in HPLC // Anal. Methods. 2013. V. 6. № 2. P. 341.
  75. Zhang J.-H., Nong R.-Y., Xie S.-M., Wang B.-J., Ai P., Yuan L.-M. Homochiral metal-organic frameworks based on amino acid ligands for HPLC separation of enantiomers // Electrophoresis. 2017. V. 38. № 19. P. 2513.
  76. Kuang X., Ma Y., Su H., Zhang J., Dong Y.-B., Tang B. High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework // Anal. Chem. 2014. V. 86. № 2. P. 1277.
  77. Nong R., Kong J., Zhang J., Chen L., Tang B., Xie S., Yuan L. Chiral metal-organic framework {[Co(L-trp)(bpe)(H2O)]·H2O·NO3}n used for high performance liquid chromatographic separation // Chem. J. Chinese Universities, 2016. V. 37. № 1. P. 19.
  78. Yuan B., Li L., Yu Y., Xu N., Fu N., Zhang J., Zhang M., Wang B., Xie S., Yuan L. Chiral metal-organic framework [Co2(d-cam)2(TMDPy)]@SiO2 core-shell microspheres for HPLC separation // Microchem. J. 2021. V. 161. Article 105815.
  79. Jiang H., Yang K., Zhao X., Zhang W., Liu Y., Jiang J., Cui Y. Highly stable Zr(IV)-based metal–organic frameworks for chiral separation in reversed-phase liquid chromatography // J. Am. Chem. Soc. 2021. V. 143. № 1390.
  80. Yu Y., Xu N., Zhang J., Wang B., Xie S., Yuan L. Chiral metal–organic framework d-His-ZIF-8@SiO2 core–shell microspheres used for HPLC enantioseparations // ACS Appl. Mater. Interfaces. 2020. V. 12. № 14. P. 16903.
  81. Wang X., Zhu Y., Liu J., Liu C., Cao C., Song W. Chiral metal–organic framework hollow nanospheres for high-efficiency enantiomer separation // Chemistry – An Asian J. 2018. V. 13. № 12. P. 1535.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (288KB)
3.

Скачать (69KB)
4.

Скачать (293KB)

© И.Х. Шайхутдинов, Т.К. Рязанова, Л.В. Лимарева, А.В. Соколов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах