Catalysts for Oxygen Reduction on a Vulcan XC-72 Carbon Substrate Modified with Transition Metals

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This paper presents the results of a study of the catalytic activity of bimetallic materials synthesized based on Vulcan XC-72 carbon black modified with nickel, cobalt, and molybdenum in the electrochemical oxygen reduction reaction. The studies of the synthesized catalysts by adsorption–desorption of nitrogen in vacuum show that they are mesoporous and possess low porosity and surface area. After modification with metals, the surface area of the catalyst and pore volume decrease. The Raman spectra of the samples evidence probable formation of intermetallics or mixed molybdenum oxides on the surface of the MoCo/C and NiMo/C catalysts, which is in agreement with the published data. Scanning electron microscopy shows the formation of spherical metal parties on amorphous Vulcan XC-72. All the studied bimetallic catalysts possess similar kinetic characteristics of the electrochemical oxygen reduction reaction; nevertheless, NiMo/C and NiNi/C catalysts manifest a higher activity. The verification of the robustness of operation of the synthesized catalysts shows their high corrosion resistance.

作者简介

K. Vinogradov

Samara National Research University

Email: winyur@yandex.ru
443100, Samara, Russia

R. Shafigulin

Samara National Research University

Email: winyur@yandex.ru
443086, Samara, Russia

S. Vostrikov

Samara State Technical University

Email: winyur@yandex.ru
443100, Samara, Russia

E. Martynenko

Samara State Technical University

Email: winyur@yandex.ru
443100, Samara, Russia

V. Podlipnov

Samara National Research University

Email: winyur@yandex.ru
443086, Samara, Russia

A. Bulanova

Samara National Research University

编辑信件的主要联系方式.
Email: winyur@yandex.ru
443086, Samara, Russia

参考

  1. Borup R.L. et al. // Current Opinion in Electrochemistry. 2020. V. 21. P. 192–200.
  2. Ott S. et al. // J. Electrochemical Society. 2022. V. 169. № 5. P. 054520.
  3. Wang L. et al. // J. Energy Chemistry. 2019. V. 39. P. 77–87.
  4. Muhyuddin M. et al. // J. Power Sources. 2023. V. 556. P. 232416.
  5. Liu M. et al. // Advanced Materials. 2019. V. 31. № 6. P. 1802234.
  6. Wu D. et al. // ChemNanoMat. 2020. V. 6. № 1. P. 32–41.
  7. Wu J., Yang H. // Accounts of chemical research. 2013. V. 46. № 8. P. 1848–1857.
  8. Shafigulin R.V. et al. // Reaction Kinetics, Mechanisms and Catalysis. 2021. V. 133. № 1. P. 455–465.
  9. Chen K. et al. // J. Colloid and Interface Science. 2021. V. 582. P. 977–990.
  10. Yoo D.J. et al. // New J. Chemistry. 2018. V. 42. № 17. P. 14386–14393.
  11. Samad S. et al. // International J. Hydrogen Energy. 2018. V. 43. № 16. P. 7823–7854.
  12. Wang C., Astruc D. // Progress in Materials Science. 2018. V. 94. P. 306–383.
  13. Sing K.S.W. // Pure and Applied Chemistry. 1985. V. 57. № 4. P. 603–619.
  14. Xiao T.C. et al. // J. Catalysis. 2001. V. 202. № 1. P. 100–109.
  15. Dufresne P. et al. // J. Physical Chemistry. 1981. V. 85. № 16. P. 2344–2351.
  16. Wu J. et al. // J. Power Sources. 2013. V. 227. P. 185–190.
  17. Martynenko E.A. et al. // J. Applied Electrochemistry. 2023. V. 53. № 4. P. 645–659.
  18. Bulanova A.V. et al. // Catalysts. 2022. V. 12. № 9. P. 1013.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (112KB)
3.

下载 (74KB)
4.

下载 (5MB)
5.

下载 (56KB)
6.

下载 (124KB)
7.

下载 (54KB)
8.

下载 (37KB)
9.

下载 (29KB)
10.

下载 (109KB)

版权所有 © К.Ю. Виноградов, Р.В. Шафигулин, С.В. Востриков, Е.А. Мартыненко, В.В. Подлипнов, А.В. Буланова, 2023

##common.cookie##