A Comparative Analysis of the Adsorption Properties and Porous Structure of an ASD-4 Powder Impregnated with Copper Formate in Different Concentrations

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The adsorption properties of an ASD-4 aluminum powder and the powder modified with copper formate in different concentrations of 1, 2, 3, and 5 wt % were studied using the low-temperature adsorption of nitrogen at 78 K. The structural properties as morphology and phase composition of the interaction products were studied; the specific surface area and porosity were evaluated. It was shown that the adsorption characteristics of the powders modified with 1 and 2 wt % copper formate remained almost unchanged, which is of interest for creating a protective layer on the surface of the aluminum particles without significantly changing its structure-forming properties. The introduction of the modifier at a concentration of 3 and 5 wt % significantly affected the adsorption characteristics of the interaction products. For example, the specific surface of the ASD-4 + 3% Cu powder amounted to 12 m2/g, while that of the ASD-4 + 5% Cu achieved 19 m2/g, whereas the specific surface of the initial ASD-4 powder was only 0.7728 m2/g.

作者简介

A. Ryabina

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, 620219, Yekaterinburg, Russia

Email: anna-ryabina@yandex.ru
Россия, 620990, Екатеринбург, ГСП-145, Первомайская, 91

V. Shevchenko

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, 620219, Yekaterinburg, Russia

Email: anna-ryabina@yandex.ru
Россия, 620990, Екатеринбург, ГСП-145, Первомайская, 91

V. Krasil’nikov

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, 620219, Yekaterinburg, Russia

编辑信件的主要联系方式.
Email: anna-ryabina@yandex.ru
Россия, 620990, Екатеринбург, ГСП-145, Первомайская, 91

参考

  1. Iwasa N. // Bulletin of the Chemical Society of Japan. 1991. № 64. P. 2619–2623.
  2. Kanoun N. // Applied Catalysis. 1991. V. 70. Is. 1. P. 225–236.
  3. Yan Q.-L., Zhao F.-Q., Kuo K.K., Zhang X.-H., Zeman S., De Luca L.T. // Progress in Energy and Combustion Science. 2016. V. 57. P. 75–136.
  4. Gromov A., Strokova Y., Kabardin A., Vorozhtsov A., Teipel U. // Propellants Explos.Pyrotech. 2009. V. 34. P. 506–512.
  5. Gromov A., De Luca L.T., Ilin A.P., Teipel U., Petrova A., Prokopiev D. // Int. J. Energ. Mater. Chem. Propulsion. 2014. V. 13. P. 399–419.
  6. Rosenband V., Gany A. // J. Materials Proc. Technol. 2004. P. 1058–1061.
  7. Красильников В Н., Шевченко В.Г., Еселевич Д.А., Конюкова А.В. и др. Способ получения формиата меди (II) Заявка № 2019118417 бюллетень № 19 патент RU 2702227 C1.
  8. Shevchenko V.G., Krasilnikov V.N., Eselevich D.A., Konyukova A.V. Oxidation of ASD-4 powder modified by formiate Mn, Fe, Co, Ni, Cu Сборник тезисов докладов XIV Международной конференции “Забабахинские научные чтения”. Снежинск. 18–22 марта 2019 г., С. 81.
  9. Wang J., Hu A., Persic J., Wen J.Z., Zhou Y.N. // J. Phys. and Chemistry of Solids. 2011. V. 72(6). P. 620–625.
  10. Золоторевский В.С., Белов Н.А. // Технология легких сплавов. 1997. № 4. С. 20–24.
  11. Olacanmi E.O., Cohrane R.F., Dalgarno K.W. // Progress in Materials Science. 2015. V. 74. P. 401–477.
  12. Todd I. // Nature. 2017. V. 549(7672). P. 342–343. https://doi.org/10.1038/549342a
  13. Ahuja B., Karg M., Nagulin K.Yu., Schmidt M. // Physics Procedia. 2014. V. 56. P. 135–146.
  14. Шевченко В.Г., Еселевич Д.А., Попов Н.А., Кузнецов М.В., Конюкова А.В., Меркушев А.Г. // Физикохимия поверхности и защита материалов. 2020. Т. 56. № 4. С. 362–368.
  15. Зленко М.А. Аддитивные технологии в машиностроении // М.В. Нагайцев. В.М. Довбыш // Пособие для инженеров. М.: ГНЦ РФФГУП “НАМИ”, 2015. 220 с.
  16. Шевченко В.Г., Красильников В.Н., Еселевич Д.А., Конюкова А.В.// Физикохимия поверхности и защита материалов. 2019. Т. 55. № 1. С. 25–32.
  17. Грег С., Синг К. // Адсорбция. Удельная поверхность. Пористость.- пер. с англ. 2-е изд. М.: Мир, 1984. 306 с.
  18. Thommes M., Kaneko K., Neimark A.V., James P Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. // Pure and Applied Chemistry. 2015. V. 87. № 9–10. P. 1051–1069.
  19. Карнаухов А.П., Киселев А.В. // Журн. физической химии. 1957. Т. 31. Вып. 12.
  20. Rouquerol J., Rouquerol F., Sing K.S.W., Llewellyn P., Maurin G. // Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd Ed., Academic Press, London, 2014.
  21. Lowell S., Shields J., Thomas M.A., Thommes M., Characterization of Porous Solids and Powders: Surface Area. Porosity and Density, Springer, 2004.
  22. De Boer J.H. The structure and properties of porous Materials. Butterworth, London, 1958.
  23. Thommes M., Cychosz K.A. // Adsorption. 2014. V. 20. P. 233–250.
  24. Fisher L.R., Israelachvili J.N. // J. Colloid Interface Sci. 1981. V. 80. P. 528–541.
  25. Thommes M. // Chemie Ingenieur Technik. 2010. V. 82. № 7. P. 1059–1073.
  26. Monson P.A. // Langmuir. 2008. V. 24. P. 12295–12302.
  27. Ball P.C., Evans R. // Langmuir. 1989. V. 5. P. 714–723.
  28. Evans R. // Phys. Condens. Matter. 1990. V. 2. P. 8989–9009.
  29. Ravikovitch P.I., Neimark A.V. // Langmuir. 2000. V. 16. P. 2419–2423.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (1MB)
4.

下载 (174KB)
5.

下载 (74KB)
6.

下载 (184KB)

版权所有 © А.В. Рябина, В.Г. Шевченко, В.Н. Красильников, 2022

##common.cookie##