An Effective PtNi/CNTs Catalyst for the Hydrogen Oxidation Reaction in an Alkaline Electrolyte

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

PtNi catalysts on carbon nanotubes (CNTs) subjected to preliminary treatment are synthesized and studied in the hydrogen oxidation reaction (HOR) in an alkaline electrolyte. A comparison of the structural and morphological and electrochemical characteristics of monoplatinum (Pt/CNTs) and bimetallic (PtNi/CNTs) catalysts in the HOR at equal concentrations of platinum and the same CNTs is conducted. It is found that catalysts synthesized on nanotubes functionalized in an alkali (CNTsNaOH) are significantly superior to PtNi catalysts synthesized on CNTs doped with nitrogen and monoplatinum catalyst in terms of stability and activity in the HOR. A PtNi/CNTsNaOH catalyst with a weight concentration of platinum of 10% manifests the highest activity in the HOR at a Pt : Ni ratio of 1 : 1. The main parameters providing high characteristics of the bimetallic system are the presence of active sites for the fixation of the metal phase on the CNTsNaOH, concentration of platinum on the surface of the catalyst, and ratio of the metals.

Sobre autores

V. Bogdanovskaya

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Samara National Research University

Email: bogd@elchem.ac.ru
119071, Moscow, Russia; 443086, Samara, Russia

I. Vernigor

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Samara National Research University

Email: bogd@elchem.ac.ru
119071, Moscow, Russia; 443086, Samara, Russia

M. Radina

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: bogd@elchem.ac.ru
119071, Moscow, Russia

P. Sinitsyn

Skolkovo Institute of Science and Technology

Email: bogd@elchem.ac.ru
121205, Moscow, Russia

V. Andreev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Samara National Research University

Email: bogd@elchem.ac.ru
119071, Moscow, Russia; 443086, Samara, Russia

N. Nikol’skaya

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: bogd@elchem.ac.ru
119071, Moscow, Russia

Bibliografia

  1. Varcoe J.R., Atanassov P., Dekel D.R. et al. // Energy Environ. Sci. 2014. V. 7. P. 3135.
  2. Firouzjaie H.A., Mustain W.E. // ACS Catal. 2020. V. 10. P. 225
  3. Wang H., Wang R., Sui S. et al. // Automot. Innov. 2021. V. 4. P. 144.
  4. Talukder N., Wang Y., Nunna B.B. et al. // Catalysts. 2022. V. 12. P. 791.
  5. Shao Y., Dodelet J.-P., Wu G. et al. // Adv. Mater. 2019. V. 31. № 1807615.
  6. Hu C., Dai L. // Adv. Mater. 2019. V. 31. № 1804672.
  7. Zhang X., Zhang X., Zhao S. et al. // Electrochimica Acta. 2021. V. 370. № 137712.
  8. Vernigor I., Bogdanovskaya V., Radina M. et al. // Catalysts. 2023. V. 13. P. 161.
  9. Rheinlander P.J., Herranz J., Durst J. et al. // J. Electrochem. Soc. 2014. V. 161 P. 1448.
  10. Qiu Y., Xie X., Li W. et al. // Chinese J. Catalysis. 2021. V. 42. I. 12. P. 2094.
  11. Sheng W.C., Gasteiger H.A., Shao-Horn Y. // J. Electrochemical Society. 2010 V. 157. P. 1529.
  12. Durst J., Simon C., Hasche F., Gasteiger H. A. // J. Electrochemical Society. 2015. V. 162. P. 190.
  13. Hu J., Kuttiyiel K.A., Sasaki K. et al. // J. Electrochemical Society. 2018. V. 165. I. 15. P. 3355.
  14. Campos‑Roldán C.A., Alonso‑Vante N. // Electrochemical Energy Reviews. 2019. V. 2. № 2. P. 312.
  15. Cong Y., Yi B., Song Y. // Nano Energy. 2018. V. 44. P. 288.
  16. Wang Y., Wang G., Li G. et al. // Energy Environ. Sci. 2015. V. 8. P. 177.
  17. Li J., Ghoshal S., Bates M.K. et al. // Angew Chem Int. Ed. Engl. 2017 V. 56. I. 49. P. 15594.
  18. Lu S., Zhuang Z. // J. Am. Chem. Soc. 2017. V. 139. P. 5156.
  19. Sheng W., Bivens A.P., Myint M. et al. // Energy Environ. Sci. 2014. V. 7. P. 1719.
  20. Bakos I., Paszternák A., Zitoun D. // Electrochimica Acta. 2015. V. 176. P. 1074.
  21. Davydova E., Zaffran J., Dhaka K. et al. // Catalysts. 2018. V. 8. № 10. P. 454.
  22. Montserrat-Sisó G., Wickman B. // Electrochimica Acta. 2022. V. 420. P. 140425.
  23. Zhou Z., Liu Y., Zhang J. et al. // Electrochemistry Communications. 2020. V. 121. P. 106871.
  24. Богдановская В.А., Кузов А.В., Радина М.В. и др. // Электрохимия. 2020. Т. 56. С. 1083.
  25. Volfkovich Y.M., Sakars A.V., Volinsky A.A. // Int. J. Nanotechnol. 2005. V. 2. P. 292.
  26. Hussein L. // RSC Adv. 2016. V. 6. P. 13088.
  27. Bogdanovskaya V., Vernigor I., Radina M. et al. // Catalysts. 2021. V. 11. P. 1354.
  28. Bogdanovskaya V., Vernigor I., Radina M. et al. // Catalysts. 2023. V. 13. P. 161.
  29. Казаринов И.А., Волынский В.В., Клюев В.В. и др. // Электрохимическая энергетика. 2017. № 4. С. 173.
  30. Вольфкович Ю.М., Михалин А.А., Рычагов А.Ю. и др. // Электрохимия. 2020. Т. 56. С. 963.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (102KB)
3.

Baixar (153KB)
4.

Baixar (332KB)
5.

Baixar (145KB)
6.

Baixar (2MB)
7.

Baixar (1MB)
8.

Baixar (223KB)
9.

Baixar (80KB)

Declaração de direitos autorais © В.А. Богдановская, И.Е. Вернигор, М.В. Радина, П.А. Синицын, В.Н. Андреев, Н.Ф. Никольская, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies