Catalysts for Oxygen Reduction on a Vulcan XC-72 Carbon Substrate Modified with Transition Metals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper presents the results of a study of the catalytic activity of bimetallic materials synthesized based on Vulcan XC-72 carbon black modified with nickel, cobalt, and molybdenum in the electrochemical oxygen reduction reaction. The studies of the synthesized catalysts by adsorption–desorption of nitrogen in vacuum show that they are mesoporous and possess low porosity and surface area. After modification with metals, the surface area of the catalyst and pore volume decrease. The Raman spectra of the samples evidence probable formation of intermetallics or mixed molybdenum oxides on the surface of the MoCo/C and NiMo/C catalysts, which is in agreement with the published data. Scanning electron microscopy shows the formation of spherical metal parties on amorphous Vulcan XC-72. All the studied bimetallic catalysts possess similar kinetic characteristics of the electrochemical oxygen reduction reaction; nevertheless, NiMo/C and NiNi/C catalysts manifest a higher activity. The verification of the robustness of operation of the synthesized catalysts shows their high corrosion resistance.

Sobre autores

K. Vinogradov

Samara National Research University

Email: winyur@yandex.ru
443100, Samara, Russia

R. Shafigulin

Samara National Research University

Email: winyur@yandex.ru
443086, Samara, Russia

S. Vostrikov

Samara State Technical University

Email: winyur@yandex.ru
443100, Samara, Russia

E. Martynenko

Samara State Technical University

Email: winyur@yandex.ru
443100, Samara, Russia

V. Podlipnov

Samara National Research University

Email: winyur@yandex.ru
443086, Samara, Russia

A. Bulanova

Samara National Research University

Autor responsável pela correspondência
Email: winyur@yandex.ru
443086, Samara, Russia

Bibliografia

  1. Borup R.L. et al. // Current Opinion in Electrochemistry. 2020. V. 21. P. 192–200.
  2. Ott S. et al. // J. Electrochemical Society. 2022. V. 169. № 5. P. 054520.
  3. Wang L. et al. // J. Energy Chemistry. 2019. V. 39. P. 77–87.
  4. Muhyuddin M. et al. // J. Power Sources. 2023. V. 556. P. 232416.
  5. Liu M. et al. // Advanced Materials. 2019. V. 31. № 6. P. 1802234.
  6. Wu D. et al. // ChemNanoMat. 2020. V. 6. № 1. P. 32–41.
  7. Wu J., Yang H. // Accounts of chemical research. 2013. V. 46. № 8. P. 1848–1857.
  8. Shafigulin R.V. et al. // Reaction Kinetics, Mechanisms and Catalysis. 2021. V. 133. № 1. P. 455–465.
  9. Chen K. et al. // J. Colloid and Interface Science. 2021. V. 582. P. 977–990.
  10. Yoo D.J. et al. // New J. Chemistry. 2018. V. 42. № 17. P. 14386–14393.
  11. Samad S. et al. // International J. Hydrogen Energy. 2018. V. 43. № 16. P. 7823–7854.
  12. Wang C., Astruc D. // Progress in Materials Science. 2018. V. 94. P. 306–383.
  13. Sing K.S.W. // Pure and Applied Chemistry. 1985. V. 57. № 4. P. 603–619.
  14. Xiao T.C. et al. // J. Catalysis. 2001. V. 202. № 1. P. 100–109.
  15. Dufresne P. et al. // J. Physical Chemistry. 1981. V. 85. № 16. P. 2344–2351.
  16. Wu J. et al. // J. Power Sources. 2013. V. 227. P. 185–190.
  17. Martynenko E.A. et al. // J. Applied Electrochemistry. 2023. V. 53. № 4. P. 645–659.
  18. Bulanova A.V. et al. // Catalysts. 2022. V. 12. № 9. P. 1013.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (112KB)
3.

Baixar (74KB)
4.

Baixar (5MB)
5.

Baixar (56KB)
6.

Baixar (124KB)
7.

Baixar (54KB)
8.

Baixar (37KB)
9.

Baixar (29KB)
10.

Baixar (109KB)

Declaração de direitos autorais © К.Ю. Виноградов, Р.В. Шафигулин, С.В. Востриков, Е.А. Мартыненко, В.В. Подлипнов, А.В. Буланова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies