Extraction of Copper Ions with Composite Sorbents Based on Chitosan from Aqueous Solutions of Electrolytes in the Presence of a Surfactant

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of studying the sorption of copper(II) ions by composite sorbents based on chitosan and mineral reinforcing fillers from aqueous solutions of electrolytes and solutions containing dodecyldimethylamine-N-oxide are presented. It is shown that the composite sorbents “chitosan–glauconite” and “chitosan–zeolite” are characterized by a larger increase in the sorption capacity for Cu(II) ions in solutions containing surfactants than the composites “chitosan–silicon dioxide” and “chitosan–montmorillonite.” The adsorption characteristics of the composite sorbents were compared with those of the initial hydrogel chitosan sorbent. IR spectra, diffraction patterns, and micrographs of the surface of the samples were obtained.

Sobre autores

V. Gabrin

Ivanovo State University of Chemical Technology

Email: gabrinvictoria@gmail.com
153000, Ivanovo, Russia

T. Nikiforova

Ivanovo State University of Chemical Technology

Autor responsável pela correspondência
Email: tatianaenik@mail.ru
153000, Ivanovo, Russia

Bibliografia

  1. Rehman M., Liu L., Wang Q. et al. // Environmental Science and Pollution Research. 2019. V. 26. P. 18003–18016.
  2. Na Y., Lee J., Lee S.H. et al. // Polymer-Plastics Technology and Materials. 2020. V. 59. P. 1768545.
  3. Saheed I.O., Oh W.Da, Suah F.B.M. // J. Hazardous Materials 2021. V. 408. P. 124889.
  4. Fufaeva V.A., Filippov D.V. // Chem. Chem. Tech. 2021. V. 64 (5). https://doi.org/10.6060/IVKKT.20216405.6354
  5. Shayegan H., Ali G.A.M., Safarifard V. // Chemistry Select. 2020. V. 5. P. 04107.
  6. Zamora-Ledezma C. // Environ. Technol. Innov. 2021. V. 22. P. 101504.
  7. Shrestha R. // J. Environmental Chemical Engineering. 2021. V. 9. P. 105688.
  8. Krishnan S. // Environmental Technology & Innovation. 2021. V. 22. P. 101525.
  9. Rathi B.S., Kumar P.S., Vo D.V.N. // Science of the Total Environment. 2021. P. 797. P. 149134.
  10. Kostag M., El Seoud O.A. // Carbohydrate Polymer Technologies and Applications. 2021. V. 2. P. 100079.
  11. Mishra J., Saini R., Singh D. // IOP Conference Series: Materials Science and Engineering. 2021. V. 1168. P. 012027.
  12. Tang S. // Chemical Engineering J. 2020. V. 393. P. 124728.
  13. Qiao L., Li S., Li Y. et al. // J. Cleaner Production. 2020. V. 253. P. 120017.
  14. Pap S. // Environmental Science and Pollution Research. 2020. V. 27. P. 9790–9802.
  15. Filippov D.V., Fufaeva V.A., Shepelev M.V. // Russian J. Inorganic Chemistry. 2022. https://doi.org/10.1134/S0036023622030081
  16. Wang F., Sun Y., Guo X. et al. // J. Sol-Gel Science and Technology. 2020. V. 96. P. 360–369.
  17. Upadhyay U., Sreedhar I., Singh S.A. et al. // Carbohydrate Polymers. 2021. V. 251. P. 117000.
  18. Fan X., Wang X., Cai Y. et al. // J. Hazardous Materials. 2022. V. 423. P. 127191.
  19. Kayan G.Ö., Kayan A. // J. Polymers and the Environment. 2021. V. 29. P. 3477–3496.
  20. Kusrini E. // International J. Technology. 2021. V. 12. P. 275–286.
  21. Lin Z., Yang Y., Liang Z. et al. // Polymers. 2021. V. 13. P. 1891.
  22. Fufaeva V.A., Nikiforova T.E. // Protection of Metals and Physical Chemistry of Surfaces. 2022. V. 58. P. 262–268.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (49KB)
3.

Baixar (60KB)
4.

Baixar (59KB)
5.

Baixar (66KB)
6.

Baixar (3MB)
7.

Baixar (297KB)
8.

Baixar (338KB)

Declaração de direitos autorais © В.А. Габрин, Т.Е. Никифорова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies