Сорбционные свойства полимера на основе Глицидилакрилата и Крахмала

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Исследована сорбционная способность синтезированного полимера на основе крахмала и глицидилакрилата по отношению к ионам тяжелых металлов. Показано, что сорбция ионов металлов достоверно описывается моделью Ленгмюра, а сам процесс носит физический характер. Методом термогравиметрического анализа установлено, что процесс термодеструкции полимера происходит трехступенчато, а его комплекса с медью – четырехступенчато. Энергия активации разложения исходного полимера для каждой ступени находится в диапазоне 24–38 кДж/моль, а для его комплекса с медью – 46–68 кДж/моль. Введение Cu(II) повышает термостабильность полученного полимера на основе крахмала.

About the authors

V. A. Lipin

Higher School of Technology and Energy of St. Petersburg State University of Industrial Technologies and Design

Email: yulia.petrova1997@yandex.ru
Saint Petersburg, Russia

A. N. Evdokimov

Higher School of Technology and Energy of St. Petersburg State University of Industrial Technologies and Design

Email: yulia.petrova1997@yandex.ru
Saint Petersburg, Russia

Y. A. Petrova

Higher School of Technology and Energy of St. Petersburg State University of Industrial Technologies and Design

Email: yulia.petrova1997@yandex.ru
Saint Petersburg, Russia

I. V. Krasanov

Saint Petersburg State Marine Technical University

Email: yulia.petrova1997@yandex.ru
Saint Petersburg, Russia

A. V. Dmitrieva

Saint Petersburg State Marine Technical University

Email: yulia.petrova1997@yandex.ru
Saint Petersburg, Russia

V. E. Sitnikova

ITMO University

Email: yulia.petrova1997@yandex.ru
Saint Petersburg, Russia

A. A. Purtova

Higher School of Technology and Energy of St. Petersburg State University of Industrial Technologies and Design

Author for correspondence.
Email: yulia.petrova1997@yandex.ru
Saint Petersburg, Russia

References

  1. Pat. CN102757409A 201210249820.5 Liu Qunjun, Quan Chunxi, Chai Chao, Lei Jia Method of preparation of glycidyl acrylate: zayavl. 19.07.2012, opubl. 16.07.2014.
  2. Labbee A., Brocas A.-L., Ibarboure E., Ishizone T., Hirao A., Deffieux A., Carlotti S. // Macromolecules. 2011. V. 44. № 16. P. 6356–6364. https://doi.org/10.1021/ma201075n
  3. Selvamalar C.S.J., Vijayanand P. S., Penlidis A., Nanjundan S. // Journal of Applied Polymer Science. 2004. V. 91. № 6. P. 3604–3612. https://doi.org/10.1002/app.13594
  4. Tamez, C., Hernandez, R., Parsons, J.G. // Microchemical Journal. 2016. № 125. P. 97–104. https://doi.org/10.1021/ma201075n.10.1016/j.microc.2015.10.028
  5. Erduran N., Işılar O. // Polymer Bulletin. 2024. V. 81. № 12. P. 1–20. https://doi.org/10.1021/ma201075n.10.1007/s00289-024-05183-3
  6. Shaban M., Hassouna M.E.M., Nasief F.M. // Environ. Sci. Pollut. Res. 2017. V. 24. P. 22954–22966. https://doi.org/10.1021/ma201075n.10.1007/s11356-017-9942-0
  7. Chen Y., Zhao W., Zhang J. // RSC Adv. 2017. V. 7. P. 4226–4236. https://doi.org/10.1021/ma201075n.10.1039/C6RA26813G
  8. Zhang J., Chen Y., // RSC Adv. 2016. V. 6. № 73. P. 69370–69380. https://doi.org/10.1021/ma201075n.10.1039/C6RA11101G
  9. Crini G., Badot P.-M. // Prog. Polym. Sci. 2008. V. 33. P. 399–447. https://doi.org/10.1021/ma201075n.10.1016/j.progpolymsci.2007.11.001
  10. Pell M.C.G., Simao A.R., Pereira G.M., Rubira A.F. // International Journal of Biological Macromolecules. 2023. V. 253 P. 127654. https://doi.org/10.1021/ma201075n.10.1016/j.ijbiomac.2023.127654
  11. Paulino A.T., Guilherme M.R., Reis A.V., Campese G.M., Muniz E.C., Nozaki J. // J. Colloid Interface Sci. 2006. № 301. P. 55–62. https://doi.org/10.1021/ma201075n.10.1016/j.jcis.2006.04.036
  12. Chauhan G.S., Jaswal S.C., Verma M. // Carbohydrate Polymers. 2006. V. 66. № 4. P. 435–443. https://doi.org/10.1021/ma201075n.10.1016/j.carbpol.2006.03.030
  13. Koh J.J., Zhang X., He C. // Int. J. Biol. Macromol. 2018. V. 109. P. 99-113. https://doi.org/10.1021/ma201075n. 10.1016/j.ijbiomac.2017.12.048
  14. Cheng X., Cheng R., Ou S., Li Y. // Carbohydrate Polymers. 2013. V. 96. P. 320–325. https
  15. Zhao W., Wang H., Meng X., Zhang L. // Royal Society Open Science. 2018. V. 5. № 6 . P. 180281. https://doi.org/10.1098/rsos.180281
  16. Abdel-Aal S.E., Gad Y.H., Dessouki A.M. // J. Appl. Polym. Sci. 2006. V. 99. P. 2460–2469. https://doi.org/10.1002/app.22801
  17. Feng K., Wen G. // Int. J. Polym. Sci. 2017. V. 3. P. 1–9. https://doi.org/10.1155/2017/6470306
  18. Pirman T., Ocepek M., Likozar B. // Industrial Engineering Chemistry Research. 2021. V. 60. № 26. P. 9347–9367. https://doi.org/10.1021/acs.iecr.1c01649
  19. Евдокимов А.Н., Курзин А.В., Липин В.А., Петрова Ю.А. // Бутлеров. сооб, 2023. Т. 76. № 12. С. 167–169. EDN: ZODHMO https://doi.org/10.37952/ROI-jbc-01/23-76-12-167
  20. Филиппов Д.В., Фуфаева В.А., Шепелев М.В. // Журн. неорг. химии. 2022. Т. 67. № 3. С. 397. https://doi.org/10.31857/S0044457X22030084
  21. Reddad Z., Gerente C., Andres Y., Le Cloirec P. // Kinetic and Equilibrium Studies. Environmental Science Technology. 2002. V. 36. № 9. P. 2067–2073. https://doi.org/10.1021/es0102989
  22. Farah A., Raza k A.S.A., Santhana K., Zularisam A.W. Mohd // Cleaner Waste Systems. 2022. V. 3. P. 100051. https://doi.org/10.1016/j.clwas.2022.100051
  23. Hsieh C.-To, Teng H. // J. Chem. Technol. Biotechnоl. 2000. V. 75. № 11. P. 1066–1072. https://doi.org/10.1002/1097-4660(200011) 75:11<1066::aid-jctb321>3.0.co;2-z
  24. Зеленцов В.И., Дацко Т.Я. // ЭОМ. 2012. Т. 48. № 6. С. 65–73.
  25. Almalike L.B. // Int. J. Adv. Res. Chem. Sci. 2017. V. 4. № 5. P. 9–13. https://doi.org/ 10.20431/2349-0403.0405002
  26. Johnson R.D., Arnold F.H. // Biochim. Biophys. Acta. 1995. V. 1247. № 2. P. 293–298. https://doi.org/10.1016/0167-4838(95)00006-g
  27. Jakubov T.S., Mainwaring D.E. // J. Colloid. Interface Sci. 2002. V. 252. № 2. P. 263–269. https://doi.org/10.1006/jcis.2002.8498
  28. Wu K., Wang Y., Hwu W. // Polym. Degrad. Stab. 2003. V. 79. № 2. P. 195. https://doi.org/10.1016/s0141-3910(02)00261-6
  29. Hasanzadeh R., Moghadam P. N., Bahri-Laleh N., Zare E.N. // International Journal of Polymer Science. 2016. P. 1–15. https://doi.org/10.1155/2016/2610541
  30. Liu C., Bai R., San Ly Q. // Water Research. 2008. V. 42. № 6. P. 1511–1522. https://doi.org/10.1016/j.watres.2007.10.031
  31. Salimbahrami S.N., Ghorbani-HasanSaraei A., Tahermansouri H., Shahidi S.-A. // International Journal of Biological Macromolecules. 2023. V. 253. P. 126724. https://doi.org/10.1016/j.ijbiomac.2023.126724

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».