Предиктивное моделирование фотохромизма дифильных спиронафтоксазинов в органических растворителях

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, we present the results of quantum-chemical modeling and experimental studies of the optical properties of difunctional spiropyranoxazines in organic solvents. For the first time, a predictive model was developed for calculating the spectral characteristics of photochromes of this class. It was shown that taking into account multiconfigurational interactions using the CASSCF method provides insight into the complex nature of photoinduced electronic transitions in spiropyranoxazines.

About the authors

Y. M. Selivantev

Russian Chemical Technical University named after D.I. Mendeleev; Inst. of Physical Chemistry and Electrochemistry RAS

Email: raitman.o.a@muctr.ru
Myusskaya Sq., 9, Moscow, 125047 Russia; Leninsky Ave., 31, bldg. 4, Moscow, 119071 Russia

N. Y. Spitsyn

Russian Chemical Technical University named after D.I. Mendeleev

Email: raitman.o.a@muctr.ru
Myusskaya Sq., 9, Moscow, 125047 Russia

A. N. Morozov

Russian Chemical Technical University named after D.I. Mendeleev

Email: raitman.o.a@muctr.ru
Myusskaya Sq., 9, Moscow, 125047 Russia

V. S. Mityanov

Russian Chemical Technical University named after D.I. Mendeleev

Email: raitman.o.a@muctr.ru
Myusskaya Sq., 9, Moscow, 125047 Russia

A. V. Kutasovich

Russian Chemical Technical University named after D.I. Mendeleev

Email: raitman.o.a@muctr.ru
Myusskaya Sq., 9, Moscow, 125047 Russia

V. V. A. Novikova

Russian Chemical Technical University named after D.I. Mendeleev

Author for correspondence.
Email: raitman.o.a@muctr.ru
Myusskaya Sq., 9, Moscow, 125047 Russia

O. A. Raitman

Russian Chemical Technical University named after D.I. Mendeleev; Inst. of Physical Chemistry and Electrochemistry RAS

Email: raitman.o.a@muctr.ru
Myusskaya Sq., 9, Moscow, 125047 Russia; Leninsky Ave., 31, bldg. 4, Moscow, 119071 Russia

References

  1. Cusido J., Deniz E., Raymo F.M. // European J. Org. Chem. 2009. V. 2009. № 13. P. 2031.
  2. Zhang J., Zou Q., Tian H. // Advanced Materials. 2013. V. 25. № 3. P. 378.
  3. Berkovic G., Krongauz V., Weiss V. // Chem. Rev. 2000. V. 100, № 5. P. 1741–1754.
  4. Minkin V.I. // Chem. Rev. 2004. V. 104. № 5. P. 2751.
  5. Minkin V.I. // Molecular Switches. V. 1 / Eds B.L. Feringa, W.R. Browne. Wiley, 2011. P. 37.
  6. Jeong Y.J. et al. // J. Mater. Chem. C. 2016. V. 4. № 23. P. 5398.
  7. Suzuki M.-A. et al. // Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals. 1994. V. 246. № 1. P. 389.
  8. Frolova L.A. et al. // J. Mater. Chem. C. 2015. V. 3. № 44. P. 11675.
  9. Minkovska S. et al. // ACS Omega. 2024. V. 9. № 4. P. 4144.
  10. Xia H., Xie K., Zou G. // Molecules. 2017. V. 22. № 12. 2236.
  11. Klajn R. // Chem. Soc. Rev. 2014. V. 43. № 1. P. 148.
  12. Min Y. et al. // Polym. Chem. 2023. V. 14. № 7. P. 888.
  13. Klajn R., Stoddart J.F., Grzybowski B.A. // Chem. Soc. Rev. 2010. V. 39. № 6. P. 2203.
  14. Zhang D. et al. // Soft. Matter. 2019. V. 15. № 18. P. 3740.
  15. Jonsson F. et al. // Langmuir. 2013. V. 29. № 7. P. 2099.
  16. Malinčík J. et al. // J. Mol. Liq. 2022. V. 346. 117842.
  17. Ivashenko O. et al. // Langmuir. 2013. V. 29. № 13. P. 4290.
  18. Garling T. et al. // Journal of Physics Condensed Matter. Institute of Physics Publishing. 2017. V. 29. № 41. 414002.
  19. Tachibana H., Yamanaka Y., Matsumoto M. // J. Mater. Chem. 2002. V. 12. № 4. P. 938.
  20. Laurent A.D., Adamo C., Jacquemin D. // Phys. Chem. Chem. Phys. 2014. V. 16. № 28. P. 14334.
  21. Rostovtseva I.A. et al. // J. Mol. Struct. 2017. V. 1145. P. 55.
  22. Liu X. et al. // Struct. Chem. 2022. V. 33. № 4. P. 1355.
  23. Chernyshev A.V. et al. // Dyes and Pigments. 2014. V. 111. P. 108.
  24. Finnerty J.J., Koch R. // J. Phys. Chem. A. 2010. V. 114. № 1. P. 474–480.
  25. Fabian J. // Dyes and Pigments. 2010. V. 84. № 1. P. 36.
  26. Guillaume M., Champagne B., Zutterman F. // J. Phys. Chem. A. 2006. V. 110. № 48. P. 13007.
  27. Liu F., Morokuma K. // J. Am. Chem. Soc. 2013. V. 135. № 29. P. 10693.
  28. Liu F. et al. // J. Chem. Theory Comput. 2013. V. 9. № 10. P. 4462.
  29. Khairutdinov R.F. et al. // J. Am. Chem. Soc. 1998. V. 120. № 49. P. 12707.
  30. Voloshin N.A. et al. // Russian Chemical Bulletin. 2003. V. 52. № 5. P. 1172.
  31. Weigend F., Ahlrichs R. // Physical Chemistry Chemical Physics. 2005. V. 7. № 18. 3297.
  32. Neese F. et al. // Chem. Phys. 2009. V. 356. № 1–3. P. 98.
  33. Grimme S. et al. // J. Chem. Phys. 2021. V. 154. № 6. 064103.
  34. Grimme S. et al. // J. Chem. Phys. 2010. V. 132. № 15. 154104.
  35. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. № 7. P. 1456.
  36. Barone V., Cossi M. // J. Phys. Chem A. 1998. V. 102. № 11. P. 1995.
  37. Neese F. // WIREs Computational Molecular Science. 2012. V. 2. № 1. P. 73.
  38. Neese F. // WIREs Computational Molecular Science. 2018. V. 8. № 1. e1327.
  39. Selivantev Yu. M. et al. // Protection of Metals and Physical Chemistry of Surfaces. 2024. V. 60. № 1. P. 110.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).