Precise calculation of one-loop radiative corrections in møller scattering
- Autores: Zykunov V.A.1,2, Ilyichev A.N.3,4
-
Afiliações:
- JINR
- Francisk Skorina Gomel State University
- Belarusian State University
- Institute for Nuclear Problems
- Edição: Volume 87, Nº 1 (2024)
- Páginas: 58-70
- Seção: ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ПОЛЯ. Теория
- URL: https://journals.rcsi.science/0044-0027/article/view/265351
- DOI: https://doi.org/10.31857/S0044002724010091
- EDN: https://elibrary.ru/KDOTFW
- ID: 265351
Citar
Resumo
The detailed analytical calcualtion of one-loop electromagnetic radiative corrections (ERC) in Møller scattering beyond ultrarelativistic approximation (taking into accout all masses) is presented. The infrared divergence (IRD) is extracted using the covariant Bardin–Shumeiko approach. The succesful numerical comparison of radiative effects with the well-known results using for IRD extraction alternative approaches is done in the wide kinematical range. A kinematic region is found in which it is needed to avoid the ultrarelativistic effects in order to get the exact estimation of radiative effects.
Sobre autores
V. Zykunov
JINR; Francisk Skorina Gomel State University
Autor responsável pela correspondência
Email: zykunov@cern.ch
Rússia, Dubna, Moscow region; Gomel, Belarus
A. Ilyichev
Belarusian State University; Institute for Nuclear Problems
Email: ily@hep.by
Belarus, Minsk; Minsk
Bibliografia
- A. Schmidt, C. O’Connor, J. C. Bernauer, and R. Milner, Nucl. Instrum. Methods A 877, 112 (2018).
- T. Benisch, S. Bernreuther, E. Devitsin, V. Kozlov, S. Potashov, K. Rith, A. Terkulov, and C. Weiskopf, Nucl. Instrum. Methods A 471, 314 (2001).
- C. S. Epstein, R. Johnston, S. Lee, J. C. Bernauer, R. Corliss, K. Dow, P. Fisher, I. Friscic, D. Hasell, R. G. Milner, et al., Phys. Rev. D 102, 012006 (2020).
- MOLLER Collab. (J. Benesch et al.), arXiv: 1411.4088 [nucl-ex].
- A. Gasparian, D. Dutta, H. Gao, and M. Khandaker, Jefferson Laboratory Experiment E12-11-106 (2011).
- W. Xiong, A. Gasparian, H. Gao, D. Dutta, M. Khandaker, N. Liyanage, E. Pasyuk, C. Peng, X. Bai, L. Ye, K. Gnanvo, C. Gu, M. Levillain, X. Yan, D. W. Higinbotham, M. Meziane, et al., Nature 575, 147 (2019).
- A. Gasparian, H. Gao, D. Dutta, N. Liyanage, E. Pasyuk, D. W. Higinbotham, C. Peng, K. Gnanvo, I. Akushevich, A. Ahmidouch, C. Ayerbe, X. Bai, H. Bhatt, D. Bhetuwal, J. Brock, V. Burkert, et al., arXiv: 2009.10510v1 [nucl-ex].
- N. Kaiser, J. Phys. G 37, 115005 (2010).
- L. W. Mo and Y. S. Tsai, Rev. Mod. Phys. 41, 205 (1969).
- D. Yu. Bardin and N. M. Shumeiko, Nucl. Phys. B 127, 242 (1977).
- N. M. Shumeiko and J. G. Suarez, J. Phys. G 26, 113 (2000).
- A. N. Ilyichev and V. A. Zykunov, Phys. Rev. D 72, 033018 (2005); hep-ph/0504191.
- A. Afanasiev, Eu. Chudakov, A. Ilyichev, and V. Zykunov, Comput. Phys. Commun. 176, 218 (2007); JLAB-PHY-06-456, hep-ph/0603027.
- I. Akushevich, H. Gao, A. Ilyichev, and M. Meziane, Eur. Phys. J. A 51, 1 (2015).
- S. G. Bondarenko, L. V. Kalinovskaya, L. A. Rumyantsev, and V. L. Yermolchyk, arXiv: 2203.10538 [hep-ph].
- P. Banerjee, T. Engel, N. Schalch, A. Signer, and Y. Ulrich, Phys. Rev. D 105, L031904 (2022).
- S. Frixione, Z. Kunszt, and A. Signer, Nucl. Phys. B 467, 399 (1996).
- R. Frederix, S. Frixione, F. Maltoni, and T. Stelzer, JHEP 0910003 (2009).
- T. Engel, A. Signer, and Y. Ulrich, JHEP 2001085 (2020).
- В. А. Зыкунов, ЯФ 80, 388 (2017) [Phys. At. Nucl. 80, 699 (2017)].
- В. А. Зыкунов, ЯФ 83, 246 (2020) [Phys. At. Nucl. 83, 463 (2020)].
- В. А. Зыкунов, ЯФ 84, 447 (2021) [Phys. At. Nucl. 84, 739 (2021)].
- A. Afanasev and A. Ilyichev, Eur. Phys. J. A 57, 280 (2021).
- Y. S. Tsai, Phys. Rev. 122, 1898 (1961).
- A. Afanasev and A. Ilyichev, Eur. Phys. J. A 58, 156 (2022).
Arquivos suplementares
