Peculiarities of Rotational Bands in Heavy and Superheavy Nuclei: Description of Yrast-Band States in 248Cm

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A further development of the expanded microscopic version of the IBM is presented by considering two-quasiparticle phonons with multipolarity up to J  = 14+J. The developed theoretical scheme is applied to describe the properties of the yrast-band states in 248Cm up to spin 34+. This heavy transactinide nucleus is the only nucleus in this mass region where the values of B(E2) up to spin I  = 28+ are measured. That is why it is considered foremost, because this information allows testing the presented theoretical scheme based on a larger volume of experimental data. The region of transactinide nuclei differs from lighter ones by the absence of the effect of the back bending in the moment of inertia dependence on the square of the rotation frequency up to the spin I  = 28+. This article is intended in particular to find out the reason for this effect. Peculiar properties of the rotational bands in heavy and superheavy nuclei are discussed.

Sobre autores

A. Efimov

Admiral Makarov State University of Maritime and Inland Shipping; Ioffe Institute, Russian Academy of Sciences

Email: efimov98@mail.ru
St. Petersburg, Russia; St. Petersburg, Russia

I. Izosimov

Joint Institute for Nuclear Research

Autor responsável pela correspondência
Email: izosimov@jinr.ru
Dubna, Moscow oblast, Russia

Bibliografia

  1. Ю. Ц. Оганесян, Вестн. РАН 90, 312 (2020) [Yu. Ts. Oganessian, Herald Russ. Acad. Sci. 90, 207 (2020)].
  2. Yu. Ts. Oganessian and V. K. Utyonkov, Nucl. Phys. A 944, 62 (2015).
  3. Yu. Ts. Oganessian, V. K. Utyonkov, N. D. Kov- rizhnykh, et al., Phys. Rev. C 106, L031301 (2022), doi: 10.1103/PhysRevC.106.L031301
  4. Yu. Ts. Oganessian, V. K. Utyonkov, D. Ibadullayev, et al., Phys. Rev. C 106, 024612 (2022), https://doi.org/10.1103/PhysRevC.106.024612
  5. Yu. Ts. Oganessian, A. Sobiczewski, and G. M. Ter-Akopian, Phys. Scr. 92, 023003 (2017).
  6. V. Utyonkov, Yu. Ts. Oganessian, S. Dmitriev, et al., EPJ Web Conf. 131, 06003 (2016).
  7. S. A. Giuliani, Z. Matheson, W. Nazarewicz, et al., Rev. Mod. Phys. 91, 011001 (2019).
  8. M. Block, F. Giacoppo, F.-P. Heberger, and S. Raeder, Riv. Nuovo Cimento 45, 279 (2022).
  9. M. S. Tezekbayeva, A. V. Yeremin, A. I. Svirikhin, et al., Eur. Phys. J. A 58, 52 (2022).
  10. K. Hauschild, A. Lopez-Martens, R. Chakma, et al., Eur. Phys. J. A 58, 6 (2022), https://doi.org/10.1140/epja/s10050-021-00657-8
  11. K. Kessaci, B. J. P. Gall, O. Dorvaux, A. Lopez-Martens, R. Chakma, K. Hauschild, M. L. Chelnokov, V. I. Chepigin, M. Forge, A. V. Isaev, I. N. Izosimov, D. E. Katrasev, A. A. Kuznetsova, O. N. Malyshev, R. Mukhin, J. Piot, et al., Phys. Rev. C 104, 044609 (2021), doi: 10.1103/PhysRevC.104.044609
  12. A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys. 58, 292 (2007).
  13. R.-D. Herzberg and D. M. Cox, Radiochim. Acta 99, 441 (2011).
  14. D. Ackermann and Ch. Theisen, Phys. Scr. 92, 083002 (2017).
  15. D. Ackermann, EPJ Web Conf. 223, 01001 (2019).
  16. R.-D. Herzberg, EPJ Web Conf. 131, 02004 (2016), doi: 10.1051/epjconf/201613102004
  17. Ch. Theisen, P. T. Greenlees, T.-L. Khoo, P. Cho- wdhuryd, and T. Ishi, Nucl. Phys. A 944, 333 (2015).
  18. B. Nerlo-Pomorska, K. Pomorski, P. Quentin, and J. Bartel, Phys. Scr. 89, 054004 (2014).
  19. P. T. Greenlees, J. Rubert, J. Piot, et al., Phys. Rev. Lett. 109, 012501 (2012).
  20. А. Д. Ефимов, И. Н. Изосимов, ЯФ 84, 421 (2021) [A. D. Efimov and I. N. Izosimov, Phys. At. Nucl. 84, 660 (2021)].
  21. А. Д. Ефимов, В. М. Михайлов, Изв. РАН. Сер. физ. 82, 1395 (2018) [A. D. Efimov and V. M. Mi- khajlov, Bull. Russ. Acad. Sci.: Phys. 82, 1266 (2018)].
  22. А. Д. Ефимов, В. М. Михайлов, Изв. РАН. Сер. физ. 83, 1244 (2019) [A. D. Efimov and V. M. Mi- khajlov, Bull. Russ. Acad. Sci.: Phys. 83, 1136 (2019)].
  23. А. Д. Ефимов, И. Н. Изосимов, ЯФ 84, 298 (2021) [A. D. Efimov and I. N. Izosimov, Phys. At. Nucl. 84, 408 (2021)].
  24. А. Д. Ефимов, ЯФ 83, 380 (2020) [A. D. Efimov, Phys. At. Nucl. 83, 651 (2020)].
  25. M. Diebel and U. Mosel, Z. Phys. A 303, 131 (1981).
  26. А. Д. Ефимов, В. М. Михайлов, Изв. РАН. Сер. физ. 77, 948 (2013) [A. D. Efimov and V. M. Mi- khajlov, Bull. Russ. Acad. Sci.: Phys. 77, 862 (2013)].
  27. D. Janssen, R. V. Jolos, and F. Donau, Nucl. Phys. A 224, 93 (1974).
  28. A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975).
  29. T. Marumori, K. Takada, and F. Sakata, Prog. Theor. Phys. Suppl. 71, 1 (1981).
  30. Н. Марч, У. Янг, С. Сампантхар, Проблема многих тел в квантовой механике (Мир, Москва, 1969) [N. H. March, W. H. Young, and S. Sampanthar, The Many-Body Problem in Quantum Mechanics (Cambridge, Univ. Press, 1967)].
  31. A. D. Efimov and V. M. Mikhajlov, EPJ Web Conf. 38, 17005 (2012).
  32. A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New York, 1975), Vol. 2.
  33. V. I. Isakov, K. I. Erokhina, H. Mach, M. Sanchez-Vega, and B. Fogelberg, Eur. Phys. J. A 14, 29 (2002).
  34. Brookhaven National Laboratory, National Nuclear Data Center (online), http://www.nndc.bnl.gov/nndc/ensdf/
  35. A. D. Efimov and V. M. Mikhajlov, Phys. Rev. C 59, 3153 (1999).
  36. G.-O. Xu and J.-Y. Zhang, Nucl. Phys. A 343, 189 (1980).
  37. M. Asai, F. P. Heberger, and A. Lopez-Martens, Nucl. Phys. A 944, 308 (2015).
  38. F. P. Heberger, Eur. Phys. J. A 53, 75 (2017).
  39. F. P. Heberger, S. Antalic, B. Suligano, et al., Eur. Phys. J. A 43, 55 (2010).
  40. А. Д. Ефимов, И. Н. Изосимов, Письма в ЭЧАЯ 18, 551 (2021) [A. D. Efimov and I. N. Izosimov, Phys. Part. Nucl. Lett. 18, 658 (2021)].

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies