Theoretical Approaches Making It Possible to Describe Simultaneously P-Even T-Odd Asymmetries in Nuclear-Fission Processes Induced by Polarized Neutrons and Accompanied by the Emission of Various Light Particles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In a special laboratory frame, the differential cross sections 
 for the fission of nonoriented target nuclei that is induced by cold polarized neutrons 
 and which is accompanied by the emission of light particles 
, such as prescission alpha particles or prompt neutrons 
, and photons can be represented as the sum of two terms. The first term is equal to the cross section for the analogous reaction induced by unpolarized neutrons, 
, where 
 is the total cross section for this reaction and 
 is the angular distribution of light particles 
 emitted in this reaction. The second term in this sum, 
, depends linearly on the neutron polarization vector 
 and describes 
-even 
-odd asymmetries in the original cross section. By employing the concepts of space isotropy and parity conservation, it is possible to represent the cross section 
 as the sum of two scalar functions, 
, which are related to the correlation functions (
) and (
)(
) that are, correspondingly, even and odd under the transformation 
, where 
 and 
 are the wave vectors of the light fission fragment and the light particle, respectively. These correlation functions can be expressed in terms of the quantities 
, whose experimental values can be found from the experimental values of the asymmetry coefficient 
 introduced earlier [1] and the angular distribution 
 of light particles by employing the relation 
. Within the quantum-mechanical approach, the theoretical values of 
 can be obtained by means of the formula 
, which takes into account the angle 
 of rotation of the light-particle wave vector 
 about the wave vector 
 of the light fission fragment under the effect of Coriolis interaction associated with the collective rotation of the fissioning system about the axis orthogonal to its symmetry axis. The angle of rotation is determined from a comparison of the experimental and theoretical values of 
 with the aid of the maximum-likelihood method. Because of taking into account quantum interference effects, 
 may in general take not only positive (as is the case within the semiclassical method of trajectory calculations [1]) but also negative values. The use of this result permits reaching reasonable agreement between the experimental and theoretical values of 
 for all 
 particles simultaneously in the cases of 
U, 
Pu, and 
Pu target nuclei. In the case of the 
U target nucleus, however, the quantity
, which is independent of the angle 
, should be supplemented with 
 in order to reach the same degree of agreement. The appearance of the latter may in principle be due [1] to the violation of axial symmetry of the fissioning system because of the effect of its bending and wriggling vibrations in the vicinity of the scission point.

Sobre autores

S. Kadmensky

Voronezh State University

Email: kadmensky@phys.vsu.ru
Voronezh, Russia

D. Lyubashevsky

Voronezh State University

Autor responsável pela correspondência
Email: kadmensky@phys.vsu.ru
Voronezh, Russia

Bibliografia

  1. С. Г. Кадменский, Л. В. Титова, В. Е. Бунаков, ЯФ 82, 239 (2019) [Phys. At. Nucl. 82, 254 (2019)].
  2. P. Jesinger, G. V. Danilyan, A. M. Gagarski, P. Geltenbort, F. Gönnenwein, A. Kötzle, Ye. I. Ko- robkina, M. Mutterer, V. Nesvizhevsky, S. R. Neu- maier, V. S. Pavlov, G. A. Petrov, V. I. Petrova, K. Schmidt, V. B. Shvachkin, and O. Zimmer, ЯФ 62, 1723 (1999) [Phys. At. Nucl. 62, 1608 (1999)].
  3. P. Jessinger, A. Kötzle, F. Gönnenwein, M. Mutterer, J. von Kalben, G. V. Danilyan, V. S. Pavlov, G. A. Petrov, A. M. Gagarski, W. H. Trzaska, S. M. Soloviev, V. V. Nesvizhevski, and O. Zimmer, Phys. At. Nucl. 65, 630 (2002).
  4. A. Gagarski, F. Gönnenwein, I. Guseva, P. Jesinger, Yu. Kopatch, T. Kuzmina, E. Lelièvre-Berna, M. Mutterer, V. Nesvizhevsky, G. Petrov, T. Soldner, G. Tiourine, W. H. Trzaska, and T. Zavarukhina, Phys. Rev. C 93, 054619 (2016).
  5. G. V. Danilyan, P. Granz, V. A. Krakhotin, F. Mezei, V. V. Novitsky, V. S. Pavlov, M. Russina, P. B. Sha- talov, and T. Wilpert, Phys. Lett. В 679, 25 (2009).
  6. Г. В. Данилян, Й. Кленке, Ю. Н. Копач, В. А. Кра- хотин, В. В. Новицкий, В. С. Павлов, П. Б. Шаталов, ЯФ 77, 715 (2014) [Phys. At. Nucl. 77, 677 (2014)].
  7. Г. В. Данилян, ЯФ 82, 235 (2019) [Phys. At. Nucl. 82, 250 (2019)].
  8. A. M. Gagarski et al., Crystallogr. Rep. 56, 1238 (2011).
  9. A. Bohr and B. Mottelson, Nuclear Structure (Benjamin, New York, 1975), Vol. 2.
  10. О. П. Сушков, В. В. Фламбаум, УФН 136, 3 (1982) [Sov. Phys. Usp. 25, 1 (1982)].
  11. А. С. Давыдов, Теория атомного ядра (Наука, Москва, 1958).
  12. С. Г. Кадменский, ЯФ 65, 1424 (2002) [Phys. At. Nucl. 65, 1390 (2002)].
  13. С. Г. Кадменский, ЯФ 62, 236 (1999).
  14. С. Г. Кадменский, ЯФ 68, 2030 (2005) [Phys. At. Nucl. 68, 1968 (2005)].
  15. С. Г. Кадменский, Л. В. Титова, В. Е. Бунаков, Изв. РАН. Сер. физ. 75, 1033 (2011) [Bull. Russ. Acad. Sci.: Phys. 75, 978 (2011)].
  16. С. Г. Кадменский, В. Е. Бунаков, Д. Е. Любашевский, Изв. РАН. Сер. физ. 83, 1236 (2019) [Bull. Russ. Acad. Sci.: Phys. 83, 1128 (2019)].
  17. C. Guet et al., Nucl. Phys. 314, 1 (1979).
  18. F. Fossati et al., Nucl. Phys. 208, 196 (1973).
  19. T. Ericson and V. Strutinsky, Nucl. Phys. 8, 284 (1958).
  20. В. М. Струтинский, ЖЭТФ 37, 861 (1959) [Sov. Phys. JETP 10, 613 (1960)].
  21. Л. Д. Ландау, Квантовая механика (Физматгиз, Москва, 1978), т. 2.
  22. С. Г. Кадменский, Д. Е. Любашевский, П. В. Кострюков, ЯФ 82, 252 (2019) [Phys. At. Nucl. 82, 267 (2019)].
  23. E. P. Wigner, Ann. Math. 62, 548 (1955); 65, 203 (1958); 67, 325 (1958).
  24. С. Г. Кадменский, В. П. Маркушев, В. И. Фурман, ЯФ 35, 300 (1982) [Sov. J. Nucl. Phys. 35, 166 (1982)].
  25. С. Г. Кадменский, ЯФ 65, 1833 (2002) [Phys. At. Nucl. 65, 1785 (2002)].
  26. В. М. Струтинский, ЯФ 3, 614 (1965).
  27. С. Г. Кадменский, Л. В. Родионова, ЯФ 66, 1259 (2004); ЯФ 68, 1491 (2005) [Phys. At. Nucl. 68, 1433 (2005)].
  28. J. R. Nix and W. J. Swiatecki, Nucl. Phys. A 71, 1 (1965).
  29. В. Е. Бунаков, С. Г. Кадменский, Д. Е. Любашевский, ЯФ 79, 198 (2016) [Phys. At. Nucl. 79, 304 (2016)].
  30. J. B. Wilhelmy, E. Cheifetz, R. C. Jared, S. G. Thom- pson, H. R. Bowman, and J. O. Rasmussen, Phys. Rev. 5, 2041 (1972).
  31. A. Gavron, Phys. Rev. 13, 2562(R) (1976).
  32. С. Г. Кадменский, Л. В. Титова, Д. Е. Любашевский, А. С. Веретенников, А. А. Писклюков, ЭЧАЯ 53, 620 (2022) [Phys. Part. Nucl. 53, 644 (2022)].
  33. Д. Е. Любашевский, Изв. РАН. Сер. физ. 84, 1406 (2020) [Bull. Russ. Acad. Sci.: Phys. 84, 1201 (2020)].
  34. Л. Яноши, Теория и практика обработки результатов измерений (Мир, Москва, 1968).
  35. И. Н. Силин, Поиск максимума правдоподобия методом линеаризации. Статистические методы в экспериментальной физике (Атомиздат, Москва, 1976).

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies