Tin Anomaly in Coulomb Energies and Analog Resonances of Neutron-Rich Tin Isotopes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An anomaly in the distribution of Coulomb energies of tin isotopes (Sn anomaly) is determined. This anomaly manifests itself as follows: in the mass-number (@) dependence of @ for the isotopes @ Sn, experimental data on @  show a linear dependence close to a constant. The Coulomb energy difference @ between the Sn–Sb neighboring isobaric nuclei is approximated by a two-parameter expression. The energies of isobaric analog resonances, @, for the isotopes 
Sn are calculated both on the basis of the resulting @ approximation within a @ phenomenological model and on the basis of the microscopic theory of finite Fermi systems. The results are compared with experimental data on 
, and it is found that the phenomenological model describes the energies 
 quite accurately, and so do the new self-consistent relativistic model.

About the authors

Yu. S. Lutostansky

National Research Center Kurchatov Institute

Author for correspondence.
Email: lutostansky@yandex.ru
Moscow, Russia

References

  1. J. D. Anderson, C. Wong, and J. W. McClure, Phys. Rev. 126, 2170 (1962).
  2. A. M. Lane and J. M. Soper, Nucl. Phys. 37, 663 (1962).
  3. A. M. Lane, Nucl. Phys. 35, 676 (1962).
  4. J. I. Fujita and K. Ikeda, Nucl. Phys. 67, 145 (1965).
  5. J. I. Fujita, S. Fujii, and K. Ikeda, Phys. Rev. 133, B549 (1964).
  6. А. Б. Мигдал, Теория конечных ферми-систем и свойства атомных ядер (Наука, Москва, 1983) [A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1983, 2nd ed.; Interscience, New York, 1967, transl. 1st ed.)].
  7. Д. Ф. Зарецкий, М. Г. Урин, ЖЭТФ 53, 324 (1967).
  8. Ю. В. Гапонов, Ю. С. Лютостанский, ЯФ 16, 484 (1972) [Sov. J. Nucl. Phys. 16, 270 (1972)].
  9. И. Н. Борзов, С. В. Толоконников, ЯФ 82, 471 (2019) [Phys. At. Nucl. 82, 560 (2019)].
  10. Э. Е. Саперштейн, С. В. Толоконников, ЯФ 79, 703 (2016) [Phys. At. Nucl. 79, 1030 (2016)].
  11. N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. 69, 054303 (2004).
  12. D. Vale, Y. F. Niu, and N. Paar, Phys. Rev. C 103, 064307 (2021); arXiv: 2012.11977 v2 [nucl-th] (2021).
  13. P. N. Huan, N. L. Anh, B. M. Loc, and I. Vidaña, Phys. Rev. C 103, 024601 (2021).
  14. K. Pham, J. Jänecke, D. A. Roberts, M. N. Harakeh, G. P. A. Berg, S. Chang, J. Liu, E. J. Stephenson, B. F. Davis, H. Akimune, and M. Fujiwara, Phys. Rev. C 51, 526 (1995).
  15. J. Yasuda, M. Sasano, R. G. T. Zegers, et al., Phys. Rev. Lett. 121, 132501 (2018).
  16. Ю. С. Лютостанский, В. Н. Тихонов, Изв. РАН. Сер. физ. 79, 466 (2015) [Bull. Acad. Sci.: Phys. 79, 425 (2015)].
  17. Ю. С. Лютостанский, ЯФ 83, 34 (2020) [Phys. At. Nucl. 83, 33 (2020)].
  18. Yu. S. Lutostansky, EPJ Web Conf. 194, 02009 (2018).
  19. О. Бор, Б. Моттельсон, Структура атомного ядра (Мир, Москва, 1971), т. 1 [A. Bohr and B. R. Mottelson, Nuclear Structure (W. A. Benjamin, New York, 1969), Vol. 1].
  20. P. Danielewicz, Nucl. Phys. A 727, 233 (2003).
  21. J. Dong, H. Zhang, L. Wang, and W. Zuo, Phys. Rev. C 88, 014302 (2013).
  22. J. Jänecke, Z. Phys. 160, 171 (1960); J. Jänecke, F. D. Becchetti, A. M. van Berg, G. P. A. Berg, G. Brouwer, M. B. Greenfield, M. N. Harakeh, M. A. Hofstee, A. Nadasen, D. A. Roberts, R. Sawafta, J. M. Schippers, E. J. Steohenson, D. P. Stewart, and S. Y. van der Werf, Nucl. Phys. A 526, 1 (1991).
  23. J. D. Anderson, C. Wong, and J. W. McClure, Phys. Rev. B 138, 615 (1965).
  24. M. S. Antony, A. Pape, and J. Britz, At. Data Nucl. Data Tables 66, 1 (1997).
  25. M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030003 (2021).
  26. J. Kvasil, V. O. Nesterenko, W. Kleinig, D. Božík, and P.-G. Reinhard, Int. J. Mod. Phys. E 20, 281 (2011).
  27. Ю. С. Лютостанский, ЯФ 74, 1207 (2011) [Phys. At. Nucl. 74, 1176 (2011)].
  28. I. N. Borzov, S. A. Fayans, E. Krömer, and D. Zawischa, Z. Phys. A 355, 117 (1996).
  29. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).
  30. С. A. Фаянс, Письма в ЖЭТФ 68, 161 (1998) [JETP Lett. 68, 169 (1998)].
  31. И. Н. Борзов, С. В. Толоконников (2022), частное сообщение.
  32. J. Wu, S. Nisihimura, P. Möller, M. R. Mumpower, R. Lozeva, C. B. Moon, A. Odahara, H. Baba, F. Browne, R. Daido, P. Doornenbal, Y. F. Fang, M. Haroon, T. Isobe, H. S. Jung, G. Lorusso, et al., arXiv: 2004.00119v1 [nucl-ex] (2020).
  33. Ю. В. Гапонов, Ю. С. Лютостанский, ЯФ 19, 62 (1974) [Sov. J. Nucl. Phys. 19, 33 (1974)].
  34. Ю. С. Лютостанский, Письма в ЖЭТФ 106, 9 (2017) [JETP Lett. 106, 7 (2017)].

Copyright (c) 2023 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies