Semi-empirical formula for spontaneous fission half-life calculation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work presents a new phenomenological approach for predicting the spontaneous fission half-lives of actinides and superheavy nuclei. A linear dependence between the decimal logarithm of the spontaneous fission half-life and the energy release of alpha decay is found for nuclei with fixed neutron excess and atomic numbers in the range . Based on this correlation, a semi-empirical formula is proposed for the spontaneous fission half-life of even–even nuclei as a function of and . The proposed formula is further extended to predict half-lives for odd-A, odd–odd nuclei, and nuclei with . The formula demonstrates good agreement with experimental data, reproducing the half-lives of 111 known nuclei with a mean deviation of 1.00 order of magnitude. Predictions of the new formula are compared with results obtained using other empirical formulas and microscopic–macroscopic and self-consistent microscopic models. An analysis of the influence of different mass tables on the accuracy of the predictions is performed. The possible fundamental relationship between spontaneous fission and alpha-decay process is discussed.

About the authors

N. S. Moiseev

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research; Tomsk Polytechnic University

Author for correspondence.
Email: adamian@theor.jinr.ru
Dubna, Russia; Tomsk, Russia

N. V. Antonenko

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research; Tomsk Polytechnic University

Email: adamian@theor.jinr.ru
Dubna, Russia; Tomsk, Russia

G. G. Adamian

Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research; Tomsk Polytechnic University

Email: adamian@theor.jinr.ru
* Dubna, Russia; Tomsk, Russia

References

  1. Y. T. Oganessian, Eur. Phys. J. A 60, 227 (2024).
  2. Y. T. Oganessian, V. K. Utyonkov, N. D. Kovrizhnykh, F. S. Abdullin, S. N. Dmitriev, D. Ibadullayev, M. G. Itkis, D. A. Kuznetsov, O. V. Petrushkin, A. V. Podshibiakin, et al., Phys. Rev. C 106, L031301 (2022).
  3. Y. T. Oganessian, V. K. Utyonkov, D. Ibadullayev, F. S. Abdullin, S. N. Dmitriev, M. G. Itkis, A. V. Karpov, N. D. Kovrizhnykh, D. A. Kuznetsov, O. V. Petrushkin, et al., Phys. Rev. C 106, 024612 (2022).
  4. Y. T. Oganessian, V. K. Utyonkov, N. D. Kovrizhnykh, F. S. Abdullin, S. N. Dmitriev, A. A. Dzhioev, D. Ibadullayev, M. G. Itkis, A. V. Karpov, D. A. Kuznetsov, et al., Phys. Rev. C 106, 064306 (2022).
  5. Y. T. Oganessian, V. K. Utyonkov, M. V. Shumeiko, F. S. Abdullin, S. N. Dmitriev, D. Ibadullayev, M. G. Itkis, N. D. Kovrizhnykh, D. A. Kuznetsov, O. V. Petrushkin, et al., Phys. Rev. C 108, 024611 (2023).
  6. Y. T. Oganessian, V. K. Utyonkov, M. V. Shumeiko, F. S. Abdullin, G. Adamian, S. N. Dmitriev, D. Ibadullayev, M. G. Itkis, N. D. Kovrizhnykh, D. A. Kuznetsov, et al., Phys. Rev. C 109, 054307 (2024).
  7. D. Ackermann, S. Antalic, and F. P. Heßberger, Eur. Phys. J. Spec. Top. 233, 1017 (2024).
  8. E. M. Kozulin, G. N. Knyazheva, A. V. Karpov, V. V. Saiko, A. A. Bogachev, I. M. Itkis, K. V. Novikov, I. V. Vorobiev, I. V. Pchelintsev, E. O. Savelieva, et al., Phys. Rev. C 109, 034616 (2024).
  9. K. Kessaci, B. J. P. Gall, O. Dorvaux, M. Forge, A. Lopez-Martens, R. Chakma, K. Hauschild, M. L. Chelnokov, V. I. Chepigin, A. V. Isaev, et al., Phys. Rev. C 110, 054310 (2024).
  10. G. Münzenberg, M. Gupta, H. M. Devaraja, Y. K. Gambhir, S. Heinz, and S. Hofmann, Eur. Phys. J. A 59, 21 (2023).
  11. A. Såmark-Roth, D. M. Cox, D. Rudolph, L. G. Sarmiento, B. G. Carlsson, J. L. Egido, P. Golubev, J. Heery, A. Yakushev, S. Åberg, et al., Phys. Rev. Lett. 126, 032503 (2021).
  12. G. G. Adamian, N. V. Antonenko, A. Diaz-Torres, and S. Heinz, Eur. Phys. J. A 56, 47 (2020).
  13. Y. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007).
  14. Y. T. Oganessian and V. K. Utyonkov, Nucl. Phys. A 944, 62 (2015).
  15. Y. T. Oganessian and V. K. Utyonkov, Rep. Prog. Phys. 78, 036301 (2015).
  16. S. Hofmann, S. Heinz, R. Mann, J. Maurer, G. Münzenberg, S. Antalic, W. Barth, H. G. Burkhard, L. Dahl, K. Eberhardt, et al., Eur. Phys. J. A 52, 180 (2016).
  17. K. Morita, Nucl. Phys. A 944, 30 (2015).
  18. S. Hofmann and G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).
  19. K. E. Gregorich, J. M. Gates, C. E. Düllmann, R. Sudowe, S. L. Nelson, M. A. Garcia, I. Dragojevi, C. M. Folden III, S. H. Neumann, D. C. Hoffman, et al., Phys. Rev. C 74, 044611 (2006).
  20. J. Dvorak, W. Brüchle, M. Chelnokov, R. Dressler, C. E. Düllmann, K. Eberhardt, V. Gorshkov, E. Jäger, R. Krücken, A. Kuznetsov, et al., Phys. Rev. Lett. 97, 242501 (2006).
  21. D. Peterson, B. B. Back, R. V. F. Janssens, T. L. Khoo, C. J. Lister, D. Seweryniak, I. Ahmad, M. P. Carpenter, C. N. Davids, A. A. Hecht, et al., Phys. Rev. C 74, 014316 (2006).
  22. S. Hofmann, S. Heinz, R. Mann, J. Maurer, G. Münzenberg, S. Antalic, W. Barth, L. Dahl, K. Eberhardt, R. Grzywacz, et al., Eur. Phys. J. A 52, 116 (2016).
  23. F. P. Heßberger, Eur. Phys. J. A 53, 75 (2017).
  24. J. Khuyagbaatar, H. Brand, R. A. Cantemir, C. E. Düllmann, F. P. Heßberger, E. Jäger, B. Kindler, J. Krier, N. Kurz, B. Lommel, et al., Phys. Rev. C 104, L031303 (2021).
  25. K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S.-I. Goto, H. Haba, E. Ideguchi, K. Katori, H. Koura, and H. Kudo, J. Phys. Soc. Jpn 76, 043201 (2007).
  26. И. В. Панов, И. Ю. Корнеев, Г. Мартинец-Пинедо, Ф. К. Тилеманн, Письма в Астрон. журн. 39, 173 (2013).
  27. Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, et al., Phys. Rev. C 70, 064609 (2004).
  28. Y. T. Oganessian, V. K. Utyonkov, S. N. Dmitriev, Y. V. Lobanov, M. G. Itkis, A. N. Polyakov, Y. S. Tsyganov, A. N. Mezentsev, A. V. Yeremin, A. A. Voinov, et al., Phys. Rev. C 72, 034611 (2005).
  29. Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Y. S. Tsyganov, A. A. Voinov, G. G. Gulbekian, et al., Phys. Rev. C 74, 044602 (2006).
  30. R. Smolan´czuk, J. Skalski, and A. Sobiczewski, Phys. Rev. C 52, 1871 (1995).
  31. R. Smolan´czuk, Phys. Rev. C 56, 812 (1997).
  32. M. Warda and J. L. Egido, Phys. Rev. C 86, 014322 (2012).
  33. A. Staszczak, A. Baran, and W. Nazarewicz, Phys. Rev. C 87, 024320 (2013).
  34. T. Ichikawa, A. Iwamoto, and P. Möller, Phys. Rev. C 79, 014305 (2009).
  35. P. Jachimowicz, M. Kowal, and J. Skalski, Phys. Rev. C 101, 014311 (2020).
  36. S. Giuliani, L. Robledo, and R. Rodriguez-Guzman, Phys. Rev. C 90, 054311 (2014).
  37. C. Xu and Z. Ren, Phys. Rev. C 71, 014309 (2005).
  38. W. J. Swiatecki, Phys. Rev. 100, 937 (1955).
  39. D. W. Dorn, Phys. Rev. 121, 1740 (1961).
  40. V. E. Viola Jr. and G. T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966).
  41. Z. Ren and C. Xu, Nucl. Phys. A 759, 64 (2005).
  42. C. Xu, Z. Ren, and Y. Guo, Phys. Rev. C 78, 044329 (2008).
  43. K. P. Santhosh, R. K. Biju, and S. Sahadevan, Nucl. Phys. A 832, 220 (2010).
  44. A. V. Karpov, V. I. Zagrebaev, Y. Martinez Palenzuela, L. F. Felipe Ruiz, and W. Greiner, Int. J. Mod. Phys. E 21, 1250013 (2012).
  45. A. Zdeb, M. Warda, and K. Pomorski, Phys. Scr. 89, 054015 (2014).
  46. X. J. Bao, S. Q. Guo, H. F. Zhang, Y. Z. Xing, J. M. Dong, and J. Q. Li, J. Phys. G: Nucl. Par. Phys. 42, 085101 (2015).
  47. K. P. Santhosh and C. Nithya, Phys. Rev. C 94, 054621 (2016).
  48. Z. Yuan, D. Bai, Z. Wang, and Z. Ren, Eur. Phys. J. A 60, 68 (2024).
  49. A. V. M. Babu, N. Dhananjaya, H. C. Manjunatha, N. Sowmya, and A. M. Nagaraja, Mod. Phys. Lett. A 39, 2450018 (2024).
  50. K. Pomorski and J. Dudek, Phys. Rev. C 67, 044316 (2003).
  51. P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).
  52. F. Kondev, M. Wang, W. Huang, S. Naimi, and G. Audi, Chin. Phys. C 45, 030001 (2021).
  53. G. Adamian, N. Antonenko, and W. Scheid, Clustering Effects Within the Dinuclear Model (Springer Berlin Heidelberg, Berlin, Heidelberg, 2012), Vol. 2, p. 165.
  54. I. Rogov, G. Adamyan, and N. Antonenko, EPJ Web Conf. 194, 06005 (2018).
  55. I. S. Rogov, G. G. Adamian, and N. V. Antonenko, Phys. Rev. C 100, 024606 (2019).
  56. I. S. Rogov, G. G. Adamian, and N. V. Antonenko, Phys. Rev. C 104, 034618 (2021).
  57. I. S. Rogov, G. G. Adamian, and N. V. Antonenko, Phys. Rev. C 105, 034619 (2022).
  58. I. S. Rogov, G. G. Adamian, and N. V. Antonenko, Phys. Rev. C 110, 014606 (2024).
  59. H. Fink, J. Maruhn, W. Scheid, and W. Greiner, Z. Phys. 268, 321 (1974).
  60. D. Poenaru and R. Gherghescu, Phys. Rev. C 97, 044621 (2018).
  61. D. Poenaru, I.-H. Plonski, and W. Greiner, Phys. Rev. C 74, 014312 (2006).
  62. D. Poenaru, M. Ivascu, A. Sandulescu, and W. Greiner, Phys. Rev. C 32, 572 (1985).
  63. S. Malik and R. Gupta, Phys. Rev. C 39, 1992 (1989).
  64. W. Seif, Phys. Rev. C 74, 034302 (2006).
  65. M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030003 (2021).
  66. J. Dong, W. Zuo, and W. Scheid, Phys. Rev. Lett. 107, 012501 (2011).
  67. Y. T. Oganesyan, Y. P. Tret’yakov, A. S. Il’inov, A. G. Demin, A. A. Pleve, S. P. Tret’yakova, V. M. Plotko, M. P. Ivanov, N. A. Danilov, Y. S. Korotkin, et al., Tech. Rep., Joint Institute for Nuclear Research (1974).
  68. Y. T. Oganessian, A. S. Iljinov, A. G. Demin, and S. P. Tretyakova, Nucl. Phys. A 239, 353 (1975).
  69. A. Türler, H. W. Gäggeler, D. T. Jost, P. Armbruster, W. Brüchle, H. Folger, F. P. Heßberger, S. Hofmann, G. Münzenberg, V. Ninov, et al., Z. Phys. A 331, 363 (1988).
  70. F. P. Heßberger, S. Hofmann, V. Ninov, P. Armbruster, H. Folger, G. Münzenberg, H. J. Schött, A. G. Popeko, A. V. Yeremin, A. N. Andreyev, et al., Z. Phys. A 359, 415 (1997).
  71. D. C. Hoffman and M. R. Lane, Radiochimica Acta 70/71, 135 (1995).
  72. A. I. Svirikhin, A. V. Yeremin, N. I. Zamyatin, I. N. Izosimov, A. V. Isaev, A. A. Kuznetsova, O. N. Malyshev, R. S. Mukhin, A. G. Popeko, Y. A. Popov, et al., Phys. Part. Nucl. Lett. 18, 445 (2021).
  73. Y. A. Lazarev, Y. V. Lobanov, Y. T. Oganessian, V. K. Utyonkov, F. S. Abdullin, A. N. Polyakov, J. Rigol, I. V. Shirokovsky, Y. S. Tsyganov, S. Iliev, et al., Phys. Rev. C 62, 064307 (2000).
  74. M. Murakami, S. Goto, H. Murayama, T. Kojima, H. Kudo, D. Kaji, K. Morimoto, H. Haba, Y. Kudou, T. Sumita, et al., Phys. Rev. C 88, 024618 (2013).
  75. S. Antalic, F. Heßberger, S. Hofmann, D. Ackermann, S. Heinz, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, et al., Eur. Phys. J. A 38, 219 (2008).
  76. S. Antalic, F. Heßberger, D. Ackermann, S. Heinz, S. Hofmann, B. Kindler, J. Khuyagbaatar, B. Lommel, and R. Mann, Eur. Phys. J. A 51, 1 (2015).
  77. S. L. Nelson, K. E. Gregorich, I. Dragojevi´c, M. A. Garcia, J. M. Gates, R. Sudowe, and H. Nitsche, Phys. Rev. Lett. 100, 022501 (2008).
  78. F. P. Hessberger, J. Phys. G: Nucl.Part. Phys. 25, 877 (1999).
  79. Y. T. Oganessian, V. K. Utyonkov, F. S. Abdullin, S. N. Dmitriev, R. Graeger, R. A. Henderson, M. G. Itkis, Y. V. Lobanov, A. N. Mezentsev, K. J. Moody, et al., Phys. Rev. C 87, 034605 (2013).
  80. A. J. Hughes and D. E. Grawoig, Statistics, a foundation for analysis (Addison-Wesley Pub. Co., 1971).
  81. J. Khuyagbaatar, F. P. Heßberger, S. Hofmann, D. Ackermann, V. S. Comas, S. Heinz, J. A. Heredia, B. Kindler, I. Kojouharov, B. Lommel, et al., Eur. Phys. J. A 46, 59 (2010).
  82. E. K. Hulet, R. W. Lougheed, J. F. Wild, R. J. Dougan, K. J. Moody, R. L. Hahn, C. M. Henderson, R. J. Dupzyk, and G. R. Bethune, Phys. Rev. C 34, 1394 (1986).
  83. J. M. Gates, C. E. Düllmann, M. Schädel, A. Yakushev, A. Türler, K. Eberhardt, J. V. Kratz, D. Ackermann, L.-L. Andersson, M. Block, et al., Phys. Rev. C 83, 054618 (2011).
  84. Y. T. Oganessian, V. K. Utyonkov, Y. V. Lobanov, F. S. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Y. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, et al., Phys. Rev. Lett. 83, 3154 (1999).
  85. P. Möller, J. R. Nix, and W. J. Swiatecki, Nucl. Phys. A 492, 349 (1989).
  86. P. Jachimowicz, M. Kowal, and J. Skalski, Phys. Rev. C 95, 014303 (2017).
  87. Z. Wang and Z. Ren, Phys. Rev. C 106, 024311 (2022).
  88. Z. Yuan, D. Bai, Z. Wang, Z. Ren, and D. Ni, Science China: Physics, Mechanics & Astronomy 66, 222012 (2023).
  89. J. Liu, Z. Wang, H. Zhang, and Z. Ren, Chin. Phys. C 48, 014105 (2024).
  90. N. Wang, M. Liu, X. Wu, and J. Meng, Phys. Lett. B 734, 215 (2014).
  91. N. Wang, Nuclear mass table with WS4 model (2014), https://www.researchgate.net/publication/307865750_Nuclear_mass_table_with_WS4_model
  92. P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016).
  93. P. Jachimowicz, M. Kowal, and J. Skalski, At. Data Nucl. Data Tables 138, 101393 (2021).
  94. K. Zhang, M.-K. Cheoun, Y.-B. Choi, P. S. Chong, J. Dong, L. Geng, E. Ha, X. He, C. Heo, M. C. Ho, et al., Phys. Rev. C 102, 024314 (2020).
  95. K. Zhang, M.-K. Cheoun, Y.-B. Choi, P. S. Chong, J. Dong, Z. Dong, X. Du, L. Geng, E. Ha, X.-T. He, et al., At. Data Nucl. Data Tables 144, 101488 (2022).
  96. P. Guo, X. Cao, K. Chen, Z. Chen, M.-K. Cheoun, Y.-B. Choi, P. C. Lam, W. Deng, J. Dong, P. Du, et al., At. Data Nucl. Data Tables 158, 101661 (2024).
  97. The BSkG3 model, http://www.astro.ulb.ac.be/pmwiki/Brusslib/BSkG3
  98. G. Scamps, S. Goriely, E. Olsen, M. Bender, and W. Ryssens, Eur. Phys. J. A 57, 1 (2021).
  99. W. Ryssens, G. Scamps, S. Goriely, and M. Bender, Eur. Phys. J. A 58, 246 (2022).
  100. W. Ryssens, G. Scamps, S. Goriely, and M. Bender, Eur. Phys. J. A 59, 96 (2023).
  101. G. Grams, W. Ryssens, G. Scamps, S. Goriely, and N. Chamel, Eur. Phys. J. A 59, 270 (2023).
  102. J. Duflo and A. Zuker, Phys. Rev. C 52, R23 (1995).
  103. J. Mendoza-Temis, J. G. Hirsch, and A. P. Zuker, Nucl. Phys. A 843, 14 (2010).
  104. S. Liran, A. Marinov, and N. Zeldes, Hyperfine Interactions 132, 421 (2001).
  105. S. Liran, A. Marinov, and N. Zeldes, nucl-th/0102055.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).