MEASUREMENT OF THE RATES OF THE 102Pd(𝑛, γ)103Pd AND 102Ru(𝑛, γ)103Ru REACTIONS IN THE HORIZONTAL CHANNEL OF THE IR-8 REACTOR AT NRC “KURCHATOV INSTITUTE”

Abstract

Metastasis is one of the main causes of relapse and subsequent high mortality from cancer. Metastases can contain very few cells and spread throughout the body. Despite the existing variety of diagnostic imaging methods, in practice, the resolution of none of them allows one to unambiguously diagnose the presence of a tumor (clump of cancer cells) smaller than 1–2 mm in size. After surgery and tumor removal, patients are typically offered chemotherapy, external beam radiation therapy, or α- or β-emitter radionuclide therapy. This therapy has side effects that lead to additional risks and may interfere with continued treatment. Recently, a number of works, in contrast to the traditional approach, have proposed using “short-range” radionuclides instead of α- or β-emitters [1–3]. It is convenient to use Auger or conversion electron emitters as “short-acting” therapeutic agents. Auger electrons and conversion electrons have a short range and high specific linear energy loss in biological tissue; they are capable of damaging cells within a few tens of microns, but do not have a radiotoxic effect over l ng distances, without damaging healthy cells and tissues. The most efficient and convenient Auger and conversion electron emitters for practical use include 103mRh (𝑇1/2 = = 56.1 min), which has the lowest ratio of the number of γ quanta to electrons [1] and can be obtained by a generator method. The predecessors of 103mRh (𝑇1/2 = 56.1 min) in the generator can be 103Ru (𝑇1/2 = = 39.247 days) or 103Pd (𝑇1/2 = 16.99 days). In order to clarify the prospects for producing these precursors, we have measured the rates of reactions 102Ru(𝑛, γ)103Ru and 102Pd(𝑛, γ)103Pd upon neutron irradiation of metal ruthenium of natural isotopic composition and metal palladium, enriched in the 102Pd isotope to 96.36%, in a horizontal experimental channel of the IR-8 reactor.

About the authors

V. A Zagryadsky

National Research Center “Kurchatov Institute”

Moscow, Russia

K. O Korolev

National Research Center “Kurchatov Institute”

Email: kirik.korolev@yandex.ru
Moscow, Russia

Y. M Kravets

National Research Center “Kurchatov Institute”

Moscow, Russia

T. M Kuznetsova

National Research Center “Kurchatov Institute”

Moscow, Russia

A. V Kurochkin

National Research Center “Kurchatov Institute”

Moscow, Russia

K. A Makoveeva

National Research Center “Kurchatov Institute”

Moscow, Russia

I. I Skobelin

National Research Center “Kurchatov Institute”

Moscow, Russia

A. N Strepetov

National Research Center “Kurchatov Institute”

Moscow, Russia

T. A Udalova

National Research Center “Kurchatov Institute”

Moscow, Russia

References

  1. P. Bernhardt, E. Forssell-Aronsson, L. Jacobsson, and G. Skarnemark, Acta Oncol. 40, 602 (2001).
  2. D. Filosofov, E. Kurakina, and V. Radchenko, Nucl. Med. Biol. 94–95, 1 (2021).
  3. G. Skarnemark, A. Odegaard-Jensen, J. Nilsson, ¨ B. Bartos, E. Kowalska, A. Bilewicz, and P. Bernhardt, J. Radioanal. Nucl. Chem. 280, 371 (2009).
  4. С. С. Арзуманов, B. C. Буслаев, Б. Г. Ерозолимский, С. В. Масалович, А. Н. Стрепетов, В. П. Федунин, А. И. Франк, А. Ф. Яшин, Б. А. Яценко, Препринт ИАЭ-4216/14 (1985).
  5. D. De Frenne, Nucl. Data Sheets 110, 2081 (2009).
  6. A. J. Koning, D. Rochman, J. Sublet, N. Dzysiuk, M. Fleming, and S. van der Marck, Nucl. Data Sheets 155, 1 (2019).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).