ACCOUNT OF NON-NUCLEONIC DEGREES OF FREEDOM IN NUCLEAR MATTER
- Authors: Rubtsova O.A.1, Pomerantsev V.N.1
-
Affiliations:
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
- Issue: Vol 87, No 3 (2024)
- Pages: 308-318
- Section: МАТЕРИАЛЫ 73-Й МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ ПО ЯДЕРНОЙ ФИЗИКЕ. Ядра. Теория
- URL: https://journals.rcsi.science/0044-0027/article/view/273292
- DOI: https://doi.org/10.31857/S0044002724030211
- EDN: https://elibrary.ru/IVERBX
- ID: 273292
Cite item
Full Text
Abstract
A two-component formalism has been developed for the reaction matrix in a nuclear medium in the case of nucleon–nucleon interaction taking into account additional non-nucleonic degrees of freedom. The approach is based on the dibaryon model of nucleon-nucleon interaction, which recently allowed to describe partial 𝑁𝑁 scattering amplitudes for the channels with total angular momentum 𝐽 ≤ 3 in a wide energy range fromzero to 0.6–1 GeV, and also to reproduce successfully the positions of the known dibaryon resonances for a number of channels. The bound states in the nuclear medium that arise for such a model are studied. An equation of state for symmetric nuclear matter has been calculated within the framework of the Brueckner–Hartree–Fock scheme.
About the authors
O. A. Rubtsova
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: rubtsova@nucl-th.sinp.msu.ru
Russia
V. N. Pomerantsev
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
Email: pomeran@nucl-th.sinp.msu.ru
Russia
References
- M. Duer et al. (CLAS Collab.), Phys. Rev. Lett. 122, 172502 (2019).
- A. Galavanov et al., J. Phys.: Conf. Ser. 1390, 012025 (2019).
- C. Yero et al. (Hall C Collab.), Phys. Rev. Lett. 125, 262501 (2020).
- W. H. Dickhoff and D. van Neck, Many-Body Theory Exposed! Propagator Description of Quantum Mechanics in Many-Body Systems (World Scientific, 2005).
- M. I. Haftel and F. Tabakin, Nucl. Phys. A 158,1 (1970).
- M. Baldo, G. F. Burgio, H.-J. Schulze, and G. Taranto, Phys. Rev. C 89, 048801 (2014).
- J.-J. Lu, Z.-H. Li, Ch.-Y. Chen, M. Baldo, and H. J. Schulze, Phys. Rev. C 96, 044309 (2017).
- В. И. Кукулин, в сб. Труды XXXIII зимней школы ПИЯФ (Гатчина, 1999), с. 207.
- V. I. Kukulin, I. T. Obukhovsky, V .N. Pomerantsev, and A. Faessler, Int. J. Mod. Phys. E 11, 1 (2002).
- V. I. Kukulin, V. N. Pomerantsev, M. Kaskulov, and A. Faessler, J. Phys. G 30, 287 (2004); V. I. Kukulin, V. N. Pomerantsev, and A. Faessler, J. Phys. G 30, 309 (2004).
- V. N. Pomerantsev, V. I. Kukulin, V. T. Voronchev, and A. Faessler, Phys. At. Nucl. 68, 1453 (2005).
- В. И. Кукулин, В. Н. Померанцев, О. А. Рубцова, М. Н. Платонова, ЯФ 82, 521 (2019) [Phys. At. Nucl. 82, 934 (2019)].
- V.I. Kukulin, O.A. Rubtsova, M.N. Platonova, V.N. Pomerantsev, H. Clement, Phys. Lett. B 801, 135146 (2020).
- V. I. Kukulin, V. N. Pomerantsev, O. A. Rubtsova, M. N. Platonova, and I. T. Obukhovsky, Chin. Phys. C46, 114106 (2022).
- О. А. Рубцова, В. Н. Померанцев, М. Н. Платонова, Вестн. Моск. Ун-та 78, 2310601 (2023).
- P. Adlarson et al. (WASA-at-COSY Collab. and SAID Data Analysis Center), Phys. Rev. Lett. 112, 202301 (2014).
- V. Komarov et al., Phys. Rev. C 93, 065206 (2016).
- H. Clement, Prog. Part. Nucl. Phys. 93, 195 (2017); H. Clement and T. Skorodko, Chin. Phys. C 45, 022001 (2021).
- D. Tsirkov et al., Phys. Rev. C 107, 015202 (2023).
- H. Muther, O. A. Rubtsova, V. I. Kukulin, and V. N. Pomerantsev, Phys. Rev. C 94, 024328 (2016).
- V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de Swart, Phys. Rev. C 49, 2950 (1994).
- R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C 53, R1483 (1996).
- F. Sammarruca and R. Millerson, Phys. Rev. C 104, 064312 (2021).
- M. Dutra et al., Phys. Rev. C 85, 035201 (2012).
Supplementary files


