DETERMINATION OF THE ACTIVITY OF LONG-LIVED 41Ca IN REACTOR BIOLOGICAL SHIELDING MATERIALS BY PHOTOACTIVATION METHOD

Abstract

The paper discusses a photoactivation method for determining the activity of the long-lived isotope 41Ca relative to the activity of 60Co in irradiated reactor biological shielding concrete. It is proposed to use photonuclear reactions on cobalt and calcium isotopes: 59Co(γ, 𝑛)58Co, 44Ca(γ, 𝑝)43K or 48Ca( γ, n)47Ca→47Sc. to determine the activity of 41Ca. The sensitivity of the proposed method is of the order of ∼10-6 Bq/g, provided that semiconductor spectrometers with an ultrapure germanium detector are used. The structure and chemical composition of the sample do not affect the proposed method. It avoids the long sample preparation times associated with radiochemical methods.

About the authors

M. V. Zheltonozhskaya

Lomonosov Moscow State University, Faculty of Physics

Email: zhelton@yandex.ru
Moscow, Russia

Y. O. Balaba

Lomonosov Moscow State University, Faculty of Physics

Moscow, Russia

D. A. Iyusyuk

Lomonosov Moscow State University, Faculty of Physics

Moscow, Russia

N. V. Kuzmenkova

Lomonosov Moscow State University, Faculty of Physics

Moscow, Russia

A. P. Chernyaev

Lomonosov Moscow State University, Faculty of Physics

Moscow, Russia

References

  1. IAEA, Global Status of Decommissioning of Nuclear Installations (Vienna, 2023), IAEA Nuclear Energy Series No. NW-T-2.16.
  2. H. Dong Sohn et al., Ann. Nucl. Energy 141, 107305 (2020).
  3. IAEA, Decommissioning Strategies for Facilities Using Radioactive Material: Safety Reports Series (Vienna, 2007), No. 50.
  4. IAEA, Radiological Characterization of Shut Down Nuclear Reactors for Decommissioning Purposes (Vienna, 1998), Technical Reports Series No. 389.
  5. Y.-J. Lee et al., Nucl. Eng. Technol. 53, 1210 (2021).
  6. J. C. Evans et al., Rad. Waste Manag. Nucl. Fuel. Cycle 11, 1 (1988).
  7. J. C. Evans, Long-Lived Activation Products in Reactor Materials (Richland, WA 99352, 1984).
  8. S. Goriely et al., At. Data Nucl. Data Tables 77, 311 (2001).
  9. D. Hampe et al., J. Radioanal. Nucl. Chem. 296, 617 (2013).
  10. X. Hou, Radiochim. Acta 93, 611 (2005).
  11. P. E. Warwick et al., Anal. Chem. 81, 1901 (2009).
  12. IAEA, Determination and Use of Scaling Factors for Waste Characterization in Nuclear Power Plants (Vienna, 2009), IAEA Nuclear Energy Series No. NW-T-1.18.
  13. X. Hou et al., Anal. Chim. Acta 608, 105 (2008).
  14. I. W. Croudace et al., J. Anal. At. Spectrom. 32, 494 (2017).
  15. D. Fink et al., Nucl. Instrum. Methods Phys. Res. B 47, 79 (1990).
  16. E. Nottoli et al., Appl. Radiat. Isot. 82, 40 (2013).
  17. N. Trautmann et al, Anal. Bioanal. Chem. 378, 348 (2004).
  18. M. V. Zheltonozhskaya et al., J. Radioanal. Nucl. Chem., Special issue (2023), https://doi.org/10.1007/s10967-023-08936-y
  19. M. L. Zhemzhurov et al., Vesc` Nacyanalnaj Akadem`` Navuk Belarus`, Phys. Tech. Ser. 66, 365 (2021).
  20. M. D. Bondar’kov et al., Bull. Russ. Acad. Sci.: Phys. 73, 266 (2009).
  21. C. Z. Serpan and B. H. Menke, Nuclear Reactor Neutron Energy Spectra (West Conshohocken, PA, 1974).
  22. J. Kopecky, Atlas of Neutron Capture Cross Sections (Vienna, 1997).
  23. L. Brualla et al., Rad. Onc. 14, 6 (2019).
  24. O. S. Deiev et al., Phys. Rev. C 106, 024617 (2022).
  25. V. V. Varlamov, Atlas of Giant Dipole Resonances (Vienna, 1999).
  26. V. A. Zheltonozhsky et al., Nucl. Instrum. Methods Phys. Res. B 456, 116 (2019).
  27. IAEA, A Basic Toxicity Classification of Radionuclides (Vienna, 1963), Technical Report Series No 15.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).