Study of cosmic rays with energies above 5 EeV using radio method

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

At the Yakutsk array in 1986 regular measurements of radio emission produced by relativistic air shower particles were started. After monitoring of background noise in the array area frequency of 30–35 MHz was chosen, since noise level is minimal in this frequency range. During this time, air showers with highest energies of 100 EeV were registered. By using hybrid measurements of charged particles, Cherenkov light and radio emission it was shown that signal amplitude proportional to air shower energy and shape of lateral distribution at sea level correlates with the depth of maximum development. Using the obtained characteristics, atomic weight of primary particles that generated air shower was estimated within QGSjetII-04 framework simulation.

全文:

受限制的访问

作者简介

I. Petrov

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: igor.petrov@ikfia.ysn.ru
俄罗斯联邦, Yakutsk

S. Knurenko

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences

Email: igor.petrov@ikfia.ysn.ru
俄罗斯联邦, Yakutsk

参考

  1. А. Д. Филоненко, УФН 185, 673 (2015) [Phys. Usp. 58, 633 (2015)].
  2. В. А. Царев, ЭЧАЯ 35, 1 (2004).
  3. J. Linsley, Phys. Rev. Lett. 10, 146 (1963).
  4. J. V. Jelley, J. H. Fruin, N. A. Porter, T. C. Weekes, F. G. Smith, and R. A. Porter, Nature 205, 327 (1965).
  5. F. D. Kahn and I. Lerche, Proc. Roy. Soc. London Ser. A 289, 206 (1966).
  6. O. Scholten, K. Werner, and F. Rusydi, Astropart. Phys. 29, 94 (2008).
  7. G. A. Askaryan, Sov. Phys. JETP 14, 441 (1962).
  8. F. G. Schröder, Prog. Part. Nucl. Phys. 93, 1 (2017).
  9. V. P. Artamonov, T. A. Egorov, N. N. Efimov, T. V. Rekhlyasova, N. I. Sleptsov, S. A. Shudrya, and V. B. Atrashkevich, in Proceedings of the 21st ICRC, Adelaide, Australia (1990), Vol. 9, p. 210.
  10. L. G. Dedenko, A. V. Glushkov, S. P. Knurenko, I. T. Makarov, M. I. Pravdin, D. A. Podgrudkov, I. E. Sleptsov, T. M. Roganova, and G. F. Fedorova, JETP Lett. 90, 787 (2009).
  11. S. Knurenko, V. Kozlov, Z. Petrov, M. Pravdin, and A. Sabourov, in Proceedings of the 22nd ECRS, Turku, Finland (2010), p. 262.
  12. S. P. Knurenko, Z. E. Petrov, and I. S. Petrov, Nucl. Instum. Methods A 866, 230 (2017).
  13. Р. Р. Каримов, С. П. Кнуренко, В. И. Козлов, И. Т. Макаров, З. Е. Петров, М. И. Правдин, А. А. Торопов, Материалы XVI международного симпозиума (Томск, Россия, 2009), с. 602.
  14. S. P. Knurenko, D. S. Borschevsky, Z. E. Petrov, and I. S. Petrov, Proc. SPIE 8696, 86960Q (2012).
  15. С. П. Кнуренко, И. С. Петров, Письма в ЖЭТФ 104, 305 (2016).
  16. S. P. Knurenko, V. I. Kozlov, Z. E. Petrov, and M. I. Pravdin, Bull. Russ. Acad. Sci.: Phys. 77, 1559 (2013).
  17. A. Tikhonov and V. Arsenin, Solution of Ill-Posed Problems (Winston, New York, 1977), p. 258.
  18. M. N. Dyakonov, S. P. Knurenko, V. A. Kolosov, D. D. Krasilnikov, F. F. Lischenyuk, I. E. Sleptsov, and S. I. Nikolsky, Nucl. Instum. Methods A 248, 224 (1986).
  19. S. P. Knurenko, V. A. Kolosov, and Z. E. Petrov, in Proceedings of the 27th ICRC, Hamburg, Germany (2001), Vol. 1, p. 157.
  20. В. А. Кочнев, в Тр.: Применение ЭВМ в задачах управления (Красноярск, 1985. С. 62–71).
  21. М. Н. Дьяконов, С. П. Кнуренко, В. А. Колосов, И. Е. Слепцов, Оптика атмосферы и океана 12, 329 (1999).
  22. С. П. Кнуренко, И. С. Петров, Изв. РАН. Сер. физ. 79, 446 (2015).
  23. S. Ostapchenko, Phys. Rev. D 83, 014018 (2011).
  24. E. G. Berezhko, S. P. Knurenko, and L. T. Ksenofontov, Astropart. Phys. 36, 31 (2012).
  25. J. Hörandel, J. Phys.: Conf. Ser. 47, 41 (2006).
  26. S. Knurenko and I. Petrov, EPJ Web Conf. 208, 08017 (2019).
  27. R. U. Abbasi, M. Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, R. Cady, B. G. Cheon, J. Chiba, M. Chikawa, A. di Matteo, T. Fujii, K. Fujita, et al., Phys. Rev. D 99, 02002 (2019).
  28. J. Bellido, A. Aab, P. Abreu, M. Aglietta, I. Al Samarai, I. F. M. Albuquerque, I. Allekotte, A. Almela, J. Alvarez Castillo, J. Alvarez-Muñiz, G. A. Anastasi, L. Anchordoqui, B. Andrada, S. Andringa, C. Aramo, F. Arqueros, et al., Proc. Sci. 301, 506 (2018).
  29. S. P. Knurenko, L. T. Ksenofontov, and I. S. Petrov, Adv. Space Res. 70, 2767 (2022).
  30. J. N. Matthews, R. U. Abbasi, M. Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, R. Cady, B. G. Cheon, J. Chiba, M. Chikawa, A. di Matteo, T. Fujii, et al., Proc. Sci. 301, 1096 (2018).

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Antenna for recording radio emissions at the Yakutsk installation.

下载 (211KB)
3. Fig. 2. Distribution function of radio emission at a frequency of 30–35 MHz in showers with energies of (1–4) × 1017 eV, (4–8) × 1017 eV, and (8–12) × 1017 eV.

下载 (96KB)
4. Fig. 3. Distribution functions of showers with energy E ≥ 1019 eV. The points are normalized to the average energy = 1.5 × 1019 eV and reduced to the average zenith angle <θ> = 43°. The data are presented on a logarithmic scale.

下载 (64KB)
5. Fig. 4. Dependence of the radio signal amplitude Amax on the energy determined from the Cherenkov light flux of the EAS at a distance of 400 m from the shower axis.

下载 (58KB)
6. Fig. 5. Correlation of Xmax with the ratio of radio signal amplitudes measured at different distances from the EAS axis: a — at a distance of 80 and 200 m; b — at a distance of 175 and 725 m.

下载 (124KB)
7. Fig. 6. a — dependence of Xmax on energy; b — dependence of mass composition on energy.

下载 (249KB)
8. Fig. 7. Distribution of arrival of EAS events on the celestial sphere.

下载 (292KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».