Proposal and Analysis of an Experiment for Accurate Measurement of the Muon Lifetime and the Fermi Constant

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An experiment is proposed for a record-breaking measurement of the world Fermi constant GF during the decay of a positive muon. All systematic errors were analyzed. The Fast Program (FP) was developed and tested using the GEANT data and running ≈1500 times faster. 1014 events were collected with two options for selecting events. An accuracy of 0.46 ps for the muon lifetime and 0.1 ppm for the GF value was obtained taking into account all systematic errors. The accuracy of the theoretical calculations of GF is 0.14 ppm within the framework of the Standard Model interactions of elementary particles

About the authors

A. M. Bakalyarov

National Research Centre Kurchatov Institute

Email: selivanov@akado.ru
Moscow, Russia

A. I. Klimov

National Research Centre Kurchatov Institute

Email: Selivanov_VI@nrcki.ru
Moscow, Russia

I. N. Machulin

National Research Centre Kurchatov Institute

Email: Selivanov_VI@nrcki.ru
Moscow, Russia

E. A. Meleshko

National Research Centre Kurchatov Institute

Email: selivanov@akado.ru
Moscow, Russia

V. I. Selivanov

National Research Centre Kurchatov Institute

Author for correspondence.
Email: selivanov@akado.ru
Moscow, Russia

References

  1. E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Tay- lor, Rev. Mod. Phys. 93, 025010 (2021).
  2. V. Tishchenko et al. (MuLan Collab.), Phys. Rev. D 87, 052003 (2013).
  3. A. Pak and A. Czarnecki, Phys. Rev. Lett. 100, 241807 (2008).
  4. A. Crivellin, M. Hoferichter, and C. A. Manzari, Phys. Rev. Lett. 127, 071801 (2021).
  5. V. Tishchenko, S. Battu, R. M. Carey, D. B. Chit- wood, J. Crnkovic, P. T. Debevec, S. Dhamija, W. Earle, A. Gafarov, K. Giovanetti, T. P. Gorringe, F. E. Gray, Z. Hartwig, D. W. Hertzog, B. Johnson, P. Kammel, et al., arXiv: 1211.0960v1 [hep-ex].
  6. https://www.onsemi.com/products/sensors/silicon-photomultipliers-sipm
  7. Y. Shao, Phys. Med. Biol. 52, 1103 (2007).
  8. https://www.caen.it/products/
  9. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, B. R. Beck, A. G. Bogdanov, D. Brandt, J. M. C. Brown, H. Burkhardt, Ph. Canal, et al., Nucl. Instrum. Methods Phys. Res. А 835, 186 (2016).
  10. S. Liao, R. Erasmus, H. Jivan, C. Pelwan, G. Peters, and E. Sideras-Haddad, J. Phys.: Conf. Ser. 645, 012021 (2015).
  11. S. Sánchez Majos, P. Achenbach, and J. Pocho- dazalla, Nucl. Instrum. Methods Phys. Res. A 594, 351 (2008).
  12. https://www.psi.ch/en/smus/pie3
  13. G. G. Myasishcheva, Yu. V. Obukhov, V. S. Roganov, and V. G. Firsov, Zh. Eksp. Teor. Fiz. 56, 1199 (1969).
  14. M. Renschler, W. Painter, F. Bisconti, A. Haungs, T. Huber, M. Karus, H. Schieler, and A. Weindl, arXiv: 1804.00897v1 [astro-ph.IM].
  15. T. Prokscha, Isis Muon Training Course, 25th-Feb-2005, https://www.psi.ch/en
  16. B. Markovic, D. Tamborini, S. Bellisai, A. Bassi, A. Pifferi, F. Villa, G. M. Padovini, and A. Tosi, in Proceedings of SPIE, 2013, San Francisco, California, United States, Vol. 8631, 86311Fhttps://doi.org/10.1117/12.2005537
  17. T. Prokscha, E. Morenzoni, K. Deiters, F. Foroughi, D. George, R. Kobler, A. Suter, and V. Vrankovic, Nucl. Instrum. Methods Phys. Res. A 595, 317 (2008).
  18. A. U. Abeysekara, R. Alfaro, C. Alvarez, J. D. Ál- varez, R. Arceo, J. C. Arteaga-Velázquez, H. A. Ayala Solares, A. S. Barber, B. M. Baughman, N. Bautista-Elivar, J. Becerra Gonzalez, E. Belmont-Moreno, S. Y. BenZvi, D. Berley, M. Bonilla Rosales, J. Braun, et al., Nucl. Instrum. Methods Phys. Res. A 888, 138 (2018).

Copyright (c) 2023 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies