Perspectives of Inorganic Scintillator GAGG Application for Precision Electromagnetic Calorimetry
- Authors: Averyanov D.A.1,2, Blau D.S.1,2, Tsyvkunova E.A.2
-
Affiliations:
- NRC ‘‘Kurchatov Institute’’
- Moscow Institute of Physics and Technology (National Research University)
- Issue: Vol 86, No 1 (2023)
- Pages: 192-203
- Section: МАТЕРИАЛЫ LXXII МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ “ЯДРО-2022: ФУНДАМЕНТАЛЬНЫЕ ВОПРОСЫ И ПРИЛОЖЕНИЯ”. Элементарные частицы и поля. Эксперимент
- URL: https://journals.rcsi.science/0044-0027/article/view/139672
- DOI: https://doi.org/10.31857/S0044002723010051
- EDN: https://elibrary.ru/QZGKZI
- ID: 139672
Cite item
Abstract
Scintillation crystals Gd
Al
Ga
O
(GAGG) are considered for the application in ionizing-radiation detectors because of their high radiation resistance, density and light yield. These crystals can be used in addition to lead tungstate (PbWO
or PWO) crystals for the development of a new generation electromagnetic calorimeter with good spatial and energy resolutions in a broad energy range. PWO crystals enable an accurate detection of high energy photons, while the addition of GAGG crystals makes it possible to precisely measure photon energies down to a few MeV units. Different options of composite electromagnetic calorimeter based on PWO and GAGG crystals are considered to optimize spatial and energy resolutions in a broad energy range (from 1 MeV to 100 GeV). The optimization is based on Geant4 simulations taking into account light collection as well as using different photodetectors and noise of electronics. The simulations are verified with the help of light yield measurements of GAGG samples obtained using radioactive sources and test beam measurements of PWO based photon spectrometer of the ALICE experiment at CERN.
About the authors
D. A. Averyanov
NRC ‘‘Kurchatov Institute’’; Moscow Institute of Physics and Technology (National Research University)
Email: daver99@yandex.ru
Moscow, Russia; Dolgoprudny, Russia
D. S. Blau
NRC ‘‘Kurchatov Institute’’; Moscow Institute of Physics and Technology (National Research University)
Email: daver99@yandex.ru
Moscow, Russia; Dolgoprudny, Russia
E. A. Tsyvkunova
Moscow Institute of Physics and Technology (National Research University)
Author for correspondence.
Email: daver99@yandex.ru
Moscow, Russia
References
- G. Dellacasa et al. (ALICE Collab.), CERN-LHCC-99-04.
- ALICE Collab., J. Phys. G: Nucl. Part. Phys. 32, 1295 (2006).
- CMS Collab., J. Phys. G: Nucl. Part. Phys. 34, 995 (2007).
- CALET Collab., Nucl. Phys. B Proc. Suppl. 256–257, 225 (2014).
- S. Acharya et al. (ALICE Collab.), JINST 14, P05025 (2019).
- M. M. Aggarwal et al. (ALICE Collab.), Phys. Lett. B 754, 235 (2016).
- A. Adare et al. (PHENIX Collab.), Phys. Rev. C 94, 064901 (2016).
- R. H. Brown and R. Q. Twiss, Nature 177, 27 (1956).
- M. M. Aggarwal et al. (WA98 Collab.), Phys. Rev. Lett. 93, 022301 (2004).
- F. Low, Phys. Rev. 110, 974 (1958).
- P. Abreu et al. (The DELPHI Collab.), Eur. Phys. J. C 47, 273 (2006).
- J. Antos et al., Z. Phys. C 59, 547 (1993).
- https://en.newpiezo.com/products/scintillation_ele- ments/
- T. Furuno et al., JINST 16, P10012 (2021).
- K. Kamada, T. Yanagida, et al., IEEE Trans. Nucl. Sci. 59(5), 2112 (2015).
- https://www.crytur.cz/materials/
- В. Н. Евдокимов и др., Препринт 86-34, ИФВЭ (Серпухов, 1986).
- S. Agostinelli et al. (Geant4 Collab.), Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).
- D. V. Aleksandrov et al., Nucl. Instrum. Methods Phys. Res. A 550, 169 (2005).
- C. W. Fabjan et al. (ALICE Collab.), J. Phys. G 32, 1295 (2006).
- J. E. Gaiser, SLAC-R-255 (1982).
Supplementary files
