DIFFERENTIATION AND RELATIONSHIPS OF THE FAMILY HEMITRIPTERIDAE ACCORDING TO DNA VARIABILITY DATA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Species of the family Hemitripteridae have been studied using analysis of variability of molecular markers: COI genes, Cyt b, 16S rRNA of the mitochondrial genome, and RAG1 of the nuclear genome. Nucleotide substitutions common to the species of the genera Blepsias and Hemitripterus have been found in the sequences of mitochondrial genes. A monophyly of the family within Blepsias and Hemitripterus is shown based on molecular phylogeny. The species of the genus Nautichthys are significantly differentiated from sea ravens; it has been suggested that they should be removed from the family Hemitripteridae. The sister relationships of the families Hemitripteridae and Agonidae have been confirmed.

About the authors

O. A. Radchenko

Institute of Biological Problems of the North, Far Eastern Branch, Russian Academy of Sciences

Email: mradchenko@mail.ru
Magadan, Russia

A. V. Petrovskaya

Institute of Biological Problems of the North, Far Eastern Branch, Russian Academy of Sciences

Magadan, Russia

I. N. Moreva

Institute of Biological Problems of the North, Far Eastern Branch, Russian Academy of Sciences; Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences

Magadan, Russia; Vladivostok, Russia

References

  1. Линдберг Г.У., Красюкова З.В. 1987. Рыбы Японского моря и сопредельных частей Охотского и Желтого морей. Ч. 5. Л.: Наука, 526 с.
  2. Морева И.Н., Радченко О.А., Незнанова С.Ю. и др. 2016. Родственные отношения Stichaeus nozawae (Jordan et Snyder, 1902) и Stichaeus grigorievi (Herzenstein, 1890) (Pisces: Stichaeidae) по данным молекулярно-генетического, кариологического анализа и ультраструктурного исследования сперматозоидов // Биология моря. Т. 42. № 5. С. 359–367.
  3. Морева И.Н., Радченко О.А., Петровская А.В., Борисенко С.А. 2017. Молекулярно-генетический и кариологический анализ двурогих бычков группы Enophrys diceraus (Cottidae) // Генетика. Т. 53. № 9. С. 1086–1097. https://doi.org/10.7868/S0016675817090119
  4. Парин Н.В., Евсеенко С.А., Васильева Е.Д. 2014. Рыбы морей России: аннотированный каталог. М.: Т-во науч. изд. КМК, 733 с.
  5. Радченко О.А. 2005. Изменчивость митохондриальной ДНК гольцов рода Salvelinus. Магадан: Изд-во СВНЦ ДВО РАН, 153 с.
  6. Радченко О.А., Морева И.Н., Поезжалова-Чегодаева Е.А. и др. 2018. Молекулярно-генетическая, кариологическая и морфологическая изменчивость Hadropareia middendorffii Schmidt, 1904 и Magadanichthys skopetsi (Shinohara, Nazarkin et Chereshnev, 2004) (Actinopterygii: Zoarcidae) // Биология моря. Т. 44. № 4. С. 260–268. https://doi.org/10.1134/s013434751804006x
  7. Таранец А.Я. 1937. Краткий определитель рыб советского Дальнего Востока и прилегающих вод // Изв. ТИНРО. Т. 11. 200 с.
  8. Федоров В.В., Черешнев И.А., Назаркин М.В. и др. 2003. Каталог морских и пресноводных рыб северной части Охотского моря. Владивосток: Дальнаука, 204 с.
  9. Dyldin Yu.V., Orlov A.M. 2022. Annotated list of ichthyofauna of inland and coastal waters of Sakhalin Island. 4. Families Triglidae–Agonidae // J. Ichthyol. V. 62. № 1. р. 34–68. https://doi.org/10.1134/S0032945222010039
  10. Fricke R., Eschmeyer W.N., van der Laan R. (eds.). 2024. Eschmeyer’s catalog of fishes: genera, species, references (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Version 10/2024).
  11. Knope M.L. 2013. Phylogenetics of the marine sculpins (Teleostei: Cottidae) of the North American Pacific Coast // Mol. Phylogen. Evol. V. 66. № 1. P. 341–349. https://doi.org/10.1016/j.ympev.2012.10.008
  12. Kumar S., Stecher G., Li M. et al. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms // Mol. Biol. Evol. V. 35. № 6. P. 1547–1549. https://doi.org/10.1093/molbev/msy096
  13. Leaché A.D., Reeder T.W. 2002. Molecular systematics of the Eastern Fence Lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches // Syst. Biol. V. 51. № 1. P. 44–68. https://doi.org/10.1080/106351502753475871
  14. Lópes J.A., Chen W.-J., Ortí G. 2004. Esociform Phylogeny // Copeia. V. 2004. № 3. P. 449–464. https://doi.org/10.1643/CG-03-087R1
  15. Love M.S., Bizzarro J.J., Cornthwaite A.M. et al. 2021. Checklist of marine and estuarine fishes from the Alaska–Yukon border, Beaufort Sea, to Cabo San Lucas, Mexico // Zootaxa. V. 5053. № 1. P. 1–285. https://doi.org/10.11646/zootaxa.5053.1.1
  16. Maniatis T., Fritsch E.F., Sambrook J. 1982. Molecular cloning, a laboratory manual. N.Y.: Cold Spring Harbor Lab., 480 p.
  17. Mecklenburg C.W., Mecklenburg T.A., Thorsteinson L.K. 2002. Fishes of Alaska. Bethesda: Am. Fish. Soc., 1037 р.
  18. Mecklenburg C.W., Mecklenburg T.A., Sheiko B.A., Steinke D. 2016. Pacific Arctic marine fishes. Conservation of Arctic flora and fauna. Akureyri: CAFF, 406 p.
  19. Meyer A. 1993. Evolution of mitochondrial DNA in fishes // Biochemistry and molecular biology of fishes. V. 2. Amsterdam: Elsevier Press. р. 1–38.
  20. Radchenko O.A., Moreva I.N., Petrovskaya A.V. 2021. The subfamily Myoxocephalinae of cottid fishes (Cottidae): genetic divergence and phylogenetic relationships // J. Fish Biol. V. 99. № 6. Р. 1857–1868. https://doi.org/10.1111/jfb.14886
  21. Rambaut A., Drummond A.J., Xie D. et al. 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7 // Syst. Biol. V. 67. № 5. P. 901–904. https://doi.org/10.1093/sysbio/syy032
  22. Ronquist F., Teslenko M., van der Mark P. et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space // Syst. Biol. V. 61. № 3. P. 539–542. https://doi.org/10.1093/sysbio/sys029
  23. Smith W.L., Busby M.S. 2014. Phylogeny and taxonomy of sculpins, sandfishes, and snailfishes (Perciformes: Cottoidei) with comments on the phylogenetic significance of their early-life-history specializations // Mol. Phylogen. Evol. V. 79. P. 332–352. https://doi.org/10.1016/j.ympev.2014.06.028
  24. Smith W.L., Wheeler W.C. 2004. Polyphyly of the mail-cheeked fishes (Teleostei: Scorpaeniformes): evidence from mitochondrial and nuclear sequence data // Mol. Phylogen. Evol. V. 32. № 2. P. 627–646. https://doi.org/10.1016/j.ympev.2004.02.006
  25. Washington B.B., Eschmeyer W.N., Howe K.M. 1984. Scorpaeniformes: relationships // Ontogeny and Systematics of Fishes. Am. Soc. Ichthyol. Herpetol. Spec. Publ. № 1. Lawrence: Allen Press. р. 438–447.
  26. Yabe M. 1985. Comparative osteology and myology of the superfamily Cottoidea (Pisces: Scorpaeniformes), and its phylogenetic classification // Mem. Fac. Fish. Hokkaido Univ. V. 32. № 1. 130 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).