Thermopreferential behavior of the Senegal bichir Polypterus senegalus (Polypteridae) under chronic visual deprivation
- Authors: Kasumyan A.O.1, Zdanovich V.V.1, Sataeva V.V.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 65, No 1 (2025)
- Pages: 114-123
- Section: Articles
- URL: https://journals.rcsi.science/0042-8752/article/view/314772
- DOI: https://doi.org/10.31857/S0042875225010086
- EDN: https://elibrary.ru/cohsmv
- ID: 314772
Cite item
Abstract
About the authors
A. O. Kasumyan
Lomonosov Moscow State UniversityMoscow, Russia
V. V. Zdanovich
Lomonosov Moscow State University
Email: zdanovich@mail.ru
Moscow, Russia
V. V. Sataeva
Lomonosov Moscow State UniversityMoscow, Russia
References
- Голованов В.К.2013а. Температурные критерии жизнедеятельности пресноводных рыб. М.: Полиграф-Плюс, 300 с.
- Голованов В.К.2013б. Эколого-физиологические закономерности распределения и поведения пресноводных рыб в термоградиентных условиях // Вопр. ихтиологии. Т. 53. № 3. С. 286–314. https://doi.org/10.7868/S0042875213030016
- Голованов В.К.,Смирнов А.К.2011. Особенности терморегуляционного поведения ранней молоди плотвыRutilus rutilusв термоградиентных условиях // Там же. Т. 51. № 4. С. 551–558.
- Девицина Г.В.,Марусов Е.А.2007. Взаимодействие сенсорных систем и пищевое поведение рыб // Успехи соврем. биологии. Т. 127. № 4. С. 387–395.
- Зданович В.В.1999. Некоторые особенности роста молоди мозамбикской тиляпииOreochromis mossambicusпри постоянных и переменных температурах // Вопр. ихтиологии. Т. 39. № 1. С. 105–110.
- Зданович В.В.2017. Поведение и двигательная активность интактного и сенсорно депривированного тетрагоноптерусаHemigrammus caudovittatusв термоградиентном поле // Тез. докл.VI Всерос. конф. по поведению животных. М.: Т-во науч. изд. КМК. С. 57.
- Зданович В.В.,Сатаева В.В.,Касумян А.О.2024. Термоизбирание у симпатрических многопёров: сенегальскогоPolypterus senegalusи Эндлихера P. endlicherii(Polypteridae) // Вопр. ихтиологии. Т. 64. № 6. С. 763–772. https://doi.org/10.31857/S0042875224060108
- Капшай Д.С.,Голованов В.К.2013. Поведение и распределение молоди теплолюбивых рыб в термоградиентных условиях в летний и зимний сезоны года // Вестн. Мордов. ун-та. № 3–4. С. 78–82.
- Касумян А.О.,Марусов Е.А.2002. Поведенческие ответы гольянаPhoxinus phoxinus(Cyprinidae) на химические сигналы в норме и после острой и хронической аносмии // Вопр. ихтиологии. Т. 42. № 5. С. 684–696.
- Касумян А.О.,Марусов Е.А.2007. Хеморецепция у хронически аносмированных рыб: феномен компенсаторного развития вкусовой системы // Там же. Т. 47. № 5. С. 684–693.
- Касумян А.О.,Зданович В.В.,Сатаева В.В.2024. Двигательная активность интактного и зрительно депривированного сенегальского многопёраPolypterus senegalus(Cladistia) при разной температуре воды // Там же. Т. 64. № 3. С. 354–362. https://doi.org/10.31857/S0042875224030097
- Константинов А.С.,Зданович В.В.1993. Некоторые характеристики поведения молоди рыб в термоградиентном поле // Вестн. МГУ. Сер. 16. Биология. № 1. С. 32–37.
- Мантейфель Б.П. 1987. Экологические и эволюционные аспекты поведения животных. М.: Наука, 270 с.
- Павлов Д.С.,Касумян А.О.1990. Сенсорные основы пищевого поведения рыб // Вопр. ихтиологии. Т. 30. № 5. С. 720–732.
- Павлов Д.С.,Садковский Р.В.,Костин В.В.,Лупандин А.И.1997. Влияние фото-, термо- и бароградиентов на поведение и вертикальное распределение молоди карповых рыб // Там же. Т. 37. № 1. С. 72–77.
- Boltz J.M.,Siemien M.J.,Stauffer J.R. Jr.1987. Influence of starvation on the preferred temperature ofOreochromis mossambicus(Peters) // Arch. Hydrobiol. V. 110. № 1. P. 143–146. https://doi.org/10.1127/archiv-hydrobiol/110/1987/143
- Braithwaite V.A.,De Perera T.B.2006. Short-range orientation in fish: how fish map space // Mar. Freshw. Behav. Physiol. V. 39. № 1. P. 37–47. https://doi.org/10.1080/10236240600562844
- Braun C.B.,Coombs S.,Fay R.R.2002. What is the nature of multisensory interaction between octavolateralis sub-systems? // Brain Behav. Evol. V. 59. № 4. P. 162–176. https://doi.org/10.1159/000064904
- Candolin U.2003. The use of multiple cues in mate choice // Biol. Rev. V. 78. № 4. P. 575–595. https://doi.org/10.1017/S1464793103006158
- Chapman B.B.,Morrell L.J.,Tosh C.R.,Krause J.2010. Behavioural consequences of sensory plasticity in guppies // Proc. R. Soc. B. V. 277. № 1686. P. 1395–1401. https://doi.org/10.1098/rspb.2009.2055
- Chen B.,Dai W.-Z.,Li X.-L. et al.2024. Wall-following — phylogenetic context of an enhanced behaviour in stygomorphicSinocyclocheilus(Cypriniformes: Cyprinidae) cavefishes // Ecol. Evol. V. 14. № 6. Article e11575. https://doi.org/10.1002/ece3.11575
- Christensen E.A.F.,Svendsen M.B.S.,Steffensen J.F.2020. The combined effect of body size and temperature on oxygen consumption rates and the size-dependency of preferred temperature in European perchPerca fluviatilis // J. Fish Biol. V. 97. № 3. P. 794–803. https://doi.org/10.1111/jfb.14435
- Coleman S.W.,Rosenthal G.G.2006. Swordtail fry attend to chemical and visual cues in detecting predators and conspecifics // PLoS ONE. V. 1. № 1. Article e118. https://doi.org/10.1371/journal.pone.0000118
- Coutant C.C. 1977. Compilation of temperature preference data // J. Fish. Res. Board Can. V. 34. № 5. P. 739–745. https://doi.org/10.1139/f77-115
- De Alba G.,Conti F.,Sánchez J. et al.2024. Effect of light and feeding regimes on the daily rhythm of thermal preference in Nile tilapia (Oreochromis niloticus) // Aquaculture. V. 578. Article 740122. https://doi.org/10.1016/j.aquaculture. 2023.740122
- Despatie S.-P.,Castonguay M.,Chabot D.,Audet C. 2001. Final thermal preferendum of Atlantic cod: effect of food ration // Trans. Am. Fish. Soc. V. 130. № 2. P. 263–275. https://doi.org/10.1577/1548-8659(2001)130<0263:FTPOAC>2.0.CO;2
- Dı́az F.,Bückle L.F.1999. Effect of the critical thermal maximum on the preferred temperatures ofIctalurus punctatusexposed to constant and fluctuating temperatures // J. Therm. Biol. V. 24. № 3. P. 155–160. https://doi.org/10.1016/S0306-4565(99)00005-4
- Ernst M.O.,Di Luca M.2011. Multisensory perception: from integration to remapping // Sensory cue integration. N.Y.: Oxford Univ. Press. P. 224–250. https://doi.org/10.1093/acprof:oso/9780195387247.003.0012
- Fangue N.A.,Podrabsky J.E.,Crawshaw L.I.,Schulte P.M.2009. Countergradient variation in temperature preference in populations of killifishFundulus heteroclitus // Physiol. Biochem. Zool. V. 82. № 6. P. 776–786. https://doi.org/10.1086/606030
- Fry F.E.J.1971. The effect of environmental factors on the physiology of fish // Fish physiology. V. 6. N.Y.: Acad. Press. P. 1–98. https://doi.org/10.1016/S1546-5098(08)60146-6
- Gonçalves-de-Freitas E.,Bolognesi M.C.,Gauy A.C.D.S. et al.2019. Social behavior and welfare in Nile tilapia // Fishes. V. 4. № 2. Article 23. https://doi.org/10.3390/fishes4020023
- Haesemeyer M.2020. Thermoregulation in fish // Mol. Cell. Endocrinol. V. 518. Article 110986. https://doi.org/10.1016/j.mce.2020.110986
- Hainer J.,Lutek K.,Maki H.,Standen E.M.2023. Sensorimotor control of swimmingPolypterus senegalusis preserved during sensory deprivation conditions across altered environments // J. Exp. Biol. V. 226. № 9. Article jeb245192. https://doi.org/10.1242/jeb.245192
- Hardy J.D.1961. Physiology of temperature regulation // Physiol. Rev. V. 41. № 3. P. 521–606. https://doi.org/10.1152/physrev.1961.41.3.521
- Hassan El.-S.,Abdel-Latif H.,Biebricher R.1992. Studies on the effects of Ca++and Co++on the swimming behavior of the blind Mexican cave fish // J. Comp. Physiol. A. V. 171. № 3. P. 413–419. https://doi.org/ 10.1007/BF00223971
- Hochachka P.W.,Somero G.N.2002. Biochemical adaptation: mechanism and process in physiological evolution. N.Y.: Oxford Univ. Press, 466 p. https://doi.org/10.1093/oso/9780195117028.001.0001
- Hughes R.N.,Blight C.M.2000. Two intertidal fish species use visual association learning to track the status of food patches in a radial maze // Anim. Behav. V. 59. № 3. P. 613–621. https://doi.org/10.1006/anbe.1999.1351
- Jobling M.1981. Temperature tolerance and the final preferendum — rapid methods for the assessment of optimum growth temperatures // J. Fish Biol. V. 19. № 4. P. 439–455. https://doi.org/10.1111/j.1095-8649.1981.tb05847.x
- Lafrance P.,Castonguay M.,Chabot D.,Audet C. 2005. Ontogenetic changes in temperature preference of Atlantic cod // Ibid. V. 66. № 2. P. 553–567. https://doi.org/10.1111/j.0022-1112.2005.00623.x
- Lessard N.,Paré M.,Lepore F.,Lassonde M.1998. Early-blind human subjects localize sound sources better than sighted subjects // Nature. V. 395. № 6699. P. 278–280. https://doi.org/10.1038/26228
- Maaswinkel H.,Li L.2003. Olfactory input increases visual sensitivity in zebrafish: a possible function for the terminal nerve and dopaminergic interplexiform cells // J. Exp. Biol. V. 206. № 13. P. 2201–2209. https://doi.org/10.1242/jeb.00397
- Moller P. 2002. Multimodal sensory integration in weakly electric fish: a behavioural account // J. Physiol. Paris. V. 96. № 5–6. P. 547–556. https://doi.org/10.1016/s0928-4257(03)00010-x
- Moller P.,Serrier J.,Squire A.,Boudinot M.1982. Social spacing in the mormyrid fishGnathonemus petersii(Pisces): a multisensory approach // Anim. Behav. V. 30. № 3. P. 641–650. https://doi.org/10.1016/S0003-3472(82)80134-6
- Montgomery J.C.,Coombs S.,Baker C.F.2001. The mechanosensory lateral line system of the hypogean form ofAstyanax fasciatus // Environ. Biol. Fish. V. 62. № 1–3. P. 87–96. https://doi.org/10.1023/A:1011873111454
- Nelson D.O.,Prosser C.L.1979. Effect of preoptic lesions on behavioral thermoregulation of green sunfish,Lepomis cyanellus, and of goldfish,Carassius auratus // J. Comp. Physiol. A. V. 129. № 3. P. 193–197. https://doi.org/10.1007/BF00657653
- New J.G.,Fewkes L.A.,Khan A.N.2001. Strike feeding behavior in the muskellunge,Esox masquinongy: contributions of the lateral line and visual sensory systems // J. Exp. Biol. V. 204. № 6. P. 1207–1221. https://doi.org/ 10.1242/jeb.204.6.1207
- Pavlov D.S.,Sadkovskii R.V.,Kostin V.V.,Lupandin A.I.2000. Experimental study of young fish distribution and behaviour under combined influence of baro-, photo- and thermo-gradients // J. Fish Biol. V. 57. № 1. P. 69–81. https://doi.org/10.1111/j.1095-8649.2000.tb00776.x
- Pfeiffer W.1968. Retina und Retinomotorik der Dipnoi und Brachiopterygii // Z. Zellforsch. V. 89. № 1. P. 62–72.https://doi.org/10.1007/BF00332652
- Pulgar J.M.,Aldana M.,Bozinovic F.,Ojeda F.P. 2003. Does food quality influence thermoregulatory behavior in the intertidal fishGirella laevifrons? // J. Therm. Biol. V. 28. № 8. P. 539–544. https://doi.org/10.1016/j.jtherbio.2003.08.001
- Reese E.S.1989. Orientation behaviour of butterflyfishes (family Chaetodontidae) on coral reefs: spatial learning of route specific landmarks and cognitive maps // Environ. Biol. Fish. V. 25. № 1–3. P. 79–86. https://doi.org/10.1007/BF00002202
- Rodríguez F.,Quintero B.,Amores L. et al.2021. Spatial cognition in teleost fish: strategies and mechanisms // Animals. V. 11. № 8. Article 2271. https://doi.org/10.3390/ani11082271
- Schakmann M.,Christensen E.A.F.,Steffensen J.F.,Svendsen M.B.S.2023. The influence of body size on behavioral thermal preference in Atlantic cod (Gadus morhua): larger fish favor colder waters // Fishes. V. 8. № 12. Article 596. https://doi.org/10.3390/fishes8120596
- Schram E.,Bierman S.,Teal L.R. et al.2013. Thermal preference of juvenile dover sole (Solea solea) in relation to thermal acclimation and optimal growth temperature // PLoS ONE. V. 8. № 4. Article e61357. https://doi.org/10.1371/journal.pone.0061357
- Schumacher S.,Burt de Perera T.,von der Emde G.2017. Electrosensory capture during multisensory discrimination of nearby objects in the weakly electric fishGnathonemus petersii // Sci. Rept. V. 7. Article 43665. https://doi.org/10.1038/srep43665
- Schurmann H.,Steffensen J.F.1992. Lethal oxygen levels at different temperatures and the preferred temperature during hypoxia of the Atlantic cod,Gadus morhuaL. // J. Fish Biol. V. 41. № 6. P. 927–934. https://doi.org/10.1111/j.1095-8649.1992.tb02720.x
- Schurmann H.,Steffensen J.F.,Lomholt J.P. 1991. The influence of hypoxia on the preferred temperature of rainbow troutOncorhynchus mykiss // J. Exp. Biol. V. 157. № 1. P. 75–86. https://doi.org/10.1242/jeb.157.1.75
- Teyke T.1990. Morphological differences in neuromasts of the blind cave fishAstyanax hubbsiand the sighted river fishAstyanax mexicanus // Brain Behav. Evol. V. 35. № 1. P. 23–30. https://doi.org/10.1159/000115853
- Vera L.M.,de Alba G.,Santos S. et al.2023. Circadian rhythm of preferred temperature in fish: behavioural thermoregulation linked to daily photocycles in zebrafish and Nile tilapia // J. Therm. Biol. V. 113. Article 103544. https://doi.org/10.1016/j.jtherbio.2023.103544
- Von Campenhausen C.,Riess I.,Weissert R.1981. Detection of stationary objects by the blind cave fishAnoptichthys jordani(Characidae) // J. Comp. Physiol. V. 143. № 3. P. 369–374. https://doi.org/10.1007/BF00611175
- Von der Emde G.,Zeymer M.2020. Multisensory object detection in weakly electric fish // The senses: a comprehensive reference. V. 7. Amsterdam et al.: Elsevier Inc. P. 281–297. https://doi.org/10.1016/B978-0-12-809324-5.24211-9
- Wagner H.-J.2001. Sensory brain areas in mesopelagic fishes // Brain Behav. Evol. V. 57. № 3. P. 117–133. https://doi.org/10.1159/000047231
- Warburton K.1990. The use of local landmarks by foraging goldfish // Anim. Behav. V. 40. № 3. P. 500–505. https://doi.org/10.1016/S0003-3472(05)80530-5
- Weissert R.,von Campenhausen C. 1981. Discrimination between stationary objects by the blind cave fishAnoptichthys jordani(Characidae) // J. Comp. Physiol. V. 143. № 3. P. 375–381. https://doi.org/10.1007/BF00611176
- Zdanovich V.V. 2006. Alteration of thermoregulation behavior in juvenile fish in relation to satiation level // J. Ichthyol. V. 46. Suppl. 2. P. S188–S193. https://doi.org/10.1134/S0032945206110087
- Znotinas K.R.,Standen E.M.2019. Aerial and aquatic visual acuity of the grey bichirPolypterus senegalus, as estimated by optokinetic response // J. Fish Biol. V. 95. № 1. P. 263–273. https://doi.org/10.1111/jfb.13724
Supplementary files
