Spatial differentiation of whitespotted char × dolly varden hybrids (salvelinus leucomaenis × s. Malma, salmonidae) and their parental char species in the utkholok river (northwestern kamchatka). Specific biotopes as an indicator of microevolutionary processes during mass interspecific hybridization in natural conditions
- Authors: Kuzishchin K.V.1, Gruzdeva M.A.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 64, No 6 (2024)
- Pages: 692-715
- Section: Articles
- URL: https://journals.rcsi.science/0042-8752/article/view/283595
- DOI: https://doi.org/10.31857/S0042875224060052
- EDN: https://elibrary.ru/QSJCMI
- ID: 283595
Cite item
Abstract
The results of the study of the distribution of whitespotted char × Dolly Varden hybrids (Salvelinus leucomaenis × S. malma) and their parental species in the Utkholok River (northwestern Kamchatka) are given. The localization of sexually mature individuals after spawning in the river channel in the pre-winter period (September–October) is presented. Qualitative differences have been revealed in the characteristics of the water flow and bottom substrate in the biotopes preferred by the chars and their hybrids. A characteristic feature of fish distribution is the position of individuals in a water flow, which provides maximum access to drift food particles for effective post-spawning recovery and preparation for wintering. It has been found that the biotope of whitespotted char × Dolly Varden hybrids is unique and differs from those of their parental species: the three groups were able to reduce the tension of feeding relationships based on spatial distribution. The results provide additional evidence of the successful course of microevolutionary processes, including the adaptation of the hybrids to their own biotope in the ecosystem. There is reason to believe that the interspecific relationships of the hybrids and parental species in the Utkholok River are nonantagonistic and their stable coexistence with continued selection, as well as the stabilization of the developed adaptations, are possible.
Full Text

About the authors
K. V. Kuzishchin
Lomonosov Moscow State University
Author for correspondence.
Email: KK_office@mail.ru
Russian Federation, Moscow
M. A. Gruzdeva
Lomonosov Moscow State University
Email: KK_office@mail.ru
Russian Federation, Moscow
References
- Богатов В.В. 1994. Экология речных сообществ российского Дальнего Востока. Владивосток: Дальнаука, 218 с.
- Васильева Е.Д., Васильев В.П. 2019. Естественная гибридизация щиповок родов Cobitis и Sabanejewia (Cobitidae) // Вопр. ихтиологии. Т. 59. № 5. С. 590–599. https://doi.org/10.1134/S0042875219050229
- Волобуев В.В. 1975. Некоторые особенности биологии проходного гольца (р. Salvelinus) р. Тауй // Гидробиологические исследования внутренних водоёмов Северо-Востока СССР. Владивосток: Изд-во ДВНЦ АН СССР. С. 321–336.
- Груздева М.А. 2010. Нерестовое поведение горбуши и кеты в бассейне р. Утхолок (Западная Камчатка) в годы высокой численности видов // Матер. докл. IV Всерос. конф. “Поведение рыб”. М.: Акварос. С. 57–60.
- Груздева М.А., Кузищин К.В., Павлов Е.Д. и др. 2017. Морфофизиологические закономерности формирования жизненных стратегий мальмы Salvelinus malma Камчатки // Вопр. ихтиологии. Т. 57. № 5. С. 534–552. https://doi.org/10.7868/S0042875217050101
- Груздева М.А., Кузищин К.В., Семенова А.В. и др. 2018. Редкий случай перманентной интрогрессивной гибридизации у гольцов рода Salvelinus (Salmonidae: Salmoniformes) в реке Утхолок, Западная Камчатка // Биология моря. Т. 44. № 6. С. 381–389. https://doi.org/10.1134/S0134347518060025
- Груздева М.А., Семенова А.В., Кузищин К.В. и др. 2020. Генетическая изменчивость мальмы (Salvelinus malma), кунджи (S. leucomaenis) и межвидовых гибридов из реки Утхолок (Северо-Западная Камчатка) // Генетика. Т. 56. № 1. С. 78–88. https://doi.org/10.31857/S0016675819090066
- Гудков П.К. 1996. Формирование жизненной стратегии мальмы Salvelinus malma (Walbaum) (Salmonidae) в условиях различных широт // Вопр. ихтиологии. Т. 36. № 3. С. 348–356.
- Кузищин К.В. 2010. Формирование и адаптивное значение внутривидового экологического разнообразия у лососёвых рыб (семейство Salmonidae): Автореф. дис. … докт. биол. наук. М.: МГУ, 49 с.
- Кузищин К.В., Семёнова А.В., Груздева М.А., Павлов Д.С. 2020. Закономерности формирования разнообразия жизненной стратегии и генетическая изменчивость камчатской микижи Parasalmo mykiss в локальной популяции // Вопр. ихтиологии. Т. 60. № 6. С. 636–654. https://doi.org/10.31857/S004287522006003X
- Кузищин К.В., Груздева М.А., Малютина А.М., Павлов Д.С. 2022. “Пресноводные компоненты” в популяциях кунджи Salvelinus leucomaenis на севере ареала вида (Камчатка) // Там же. Т. 62. № 5. C. 541–555. https://doi.org/10.31857/S0042875222050125
- Кузищин К.В., Груздева М.А., Семенова А.В. 2023. О расширении зоны гибридизации гольцов рода Salvelinus – кунджи S. leucomaenis и северной мальмы S. malma (Salmonidae) – в реках Камчатского полуострова // Там же. Т. 63. № 6. С. 704–722. https://doi.org/10.31857/S0042875223060140
- Кузищин К.В., Емельянова Н.Г., Груздева М.А. 2024. Состояние гонад производителей кунджи Salvelinus leucomaenis, северной мальмы S. malma и гибридов кунджа × мальма реки Утхолок в свете проблемы межвидовой гибридизации у гольцов рода Salvelinus (Salmonidae) // Там же. Т. 64. № 5. С. 562-577.
- https://doi.org/10.31857/S0042875224050032
- Лакин Г.Ф. 1990. Биометрия. М.: Высш. шк., 352 с.
- Павлов Д.С., Савваитова К.А., Кузищин К.В. и др. 2009. Состояние и мониторинг биоразнообразия лососёвых рыб и среды их обитания на Камчатке (на примере территории заказника “Река Коль”). М.: Т-во науч. изд. КМК, 156 с.
- Павлов Д.С., Кузищин К.В., Груздева М.А. и др. 2013. Разнообразие жизненной стратегии мальмы Salvelinus malma (Walbaum) (Salmonidae, Salmoniformes) Камчатки: онтогенетические реконструкции по данным рентгенофлуоресцентного анализа микроэлементного состава регистрирующих структур // Докл. РАН. Т. 450. № 2. С. 240–244. https://doi.org/10.7868/S0869565213150267
- Павлов Д.С., Поляков М.П., Кузищин К.В. и др. 2014. Вариации проходного образа жизни мальмы Salvelinus malma и кунджи Salvelinus leucomaenis реки Коль (Западная Камчатка) по данным соотношения ионов Sr2+/Ca2+ в отолитах // Тез. докл. XV Междунар. конф. “Сохранение биоразнообразия Камчатки и прилегающих морей”. Петропавловск-Камчатский: Камчатпресс. C. 349–352.
- Павлов Д.С., Кириллов П.И., Кириллова Е.А. и др. 2016. Состояние и мониторинг биоразнообразия рыб, рыбообразных и среды их обитания в бассейне реки Утхолок. М.: Т-во науч. изд. КМК, 197 с.
- Савваитова К.А. 1989. Арктические гольцы (структура популяционных систем, перспективы хозяйственного использования). М.: Агропромиздат, 223 с.
- Тиллер И.В. 2007. Проходная мальма (Salvelinus malma) Камчатки // Исследования водных биологических ресурсов Камчатки и северо-западной части Тихого океана. Вып. 9. С. 79–95.
- Тиллер И.В. 2013. Структура популяции проходной мальмы Salvelinus malma р. Кихчик (Западная Камчатка) // Тез. докл. XIV Междунар. науч. конф. “Сохранение биоразнообразия Камчатки и прилегающих морей”. Петропавловск-Камчатский: Камчатпресс. С. 118–122.
- Чалов Р.С. 2008. Русловедение: теория, география, практика. Т. 1. М.: ЛКИ, 608 с.
- Чебанова В.В. 2009. Бентос лососевых рек Камчатки. М: Изд-во ВНИРО, 172 с.
- Черешнев И.А., Штундюк Ю.В. 1987. К изучению биологии гольцов (Salvelinus, Salmonidae) бассейна реки Анадырь. Материалы по систематике и биологии проходного гольца-мальмы Salvelinus malma (Walbaum) // Биология пресноводных рыб Дальнего Востока. Владивосток: Изд-во ДВО АН СССР. С. 55–78.
- Черешнев И.А., Гудков П.К., Нейман М.Ю. 1989. Первые данные по биологии проходной мальмы бассейна р. Чегитунь (арктическое побережье Восточной Чукотки) // Вопр. ихтиологии. Т. 29. Вып. 1. С. 68–83.
- Черешнев И.А., Волобуев В.В., Шестаков А.В., Фролов С.В. 2002. Лососевидные рыбы северо-востока России. Владивосток: Дальнаука, 496 с.
- Abbott R., Albach D., Ansell S. et al. 2013. Hybridization and speciation // J. Evol. Biol. V. 26. № 2. P. 229–246. https://doi.org/10.1111/j.1420-9101.2012.02599.x
- Aboim M.A., Mavárez J., Bernatchez L., Coelho M.M. 2010. Introgressive hybridization between two Iberian endemic cyprinid fish: a comparison between two independent hybrid zones // Ibid. V. 23. № 4. P. 817–828. https://doi.org/10.1111/j.1420-9101.2010.01953.x
- Ackermann M., Doebeli M. 2004. Evolution of niche width and adaptive diversification // Evolution. V. 58. № 12. P. 2599–2612. https://doi.org/10.1111/j.0014-3820.2004.tb01614.x
- Albanese B., Angermeier P.L., Peterson J.T. 2009. Does mobility explain variation in colonisation and population recovery among stream fishes? // Freshw. Biol. V. 54. № 7. P. 1444–1460. https://doi.org/10.1111/j.1365-2427.2009.02194.x
- Allendorf F.W., Leary R.F., Spruell P., Wenburg J.K. 2001. The problems with hybrids: setting conservation guidelines // Trends Ecol. Evol. V. 16. № 11. P. 613–622. https://doi.org/10.1016/S0169-5347(01)02290-X
- Armstrong J.D., Grant J.W.A., Forsgren H.L. et al. 1998. The application of science to the management of Atlantic salmon (Salmo salar): integration across scales // Can. J. Fish. Aquat. Sci. V. 55. Suppl. 1. P. 303–311. https://doi.org/10.1139/d98-014
- Arnegard M.E., McGee M.D., Matthews B. et al. 2014. Genetics of ecological divergence during speciation // Nature. V. 511. № 7509. P. 307–311. https://doi.org/10.1038/nature13301
- Arnold M.L. 1997. Natural hybridization and evolution. Oxford: Oxford Univ. Press, 231 p.
- Baxter C.V., Fausch K.D., Murakami M., Chapman P.L. 2007. Invading rainbow trout usurp a terrestrial prey subsidy from native charr and reduce their growth and abundance // Oecologia. V. 153. № 2. P. 461–470. https://doi.org/10.1007/s00442-007-0743-x
- Berbel-Filho W.M., Pacheco G., Lira M.G. et al. 2022. Additive and non-additive epigenetic signatures of natural hybridization between fish species with different mating systems // Epigenetics. V. 17. № 13. P. 2356–2365. https://doi.org/10.1080/15592294.2022.2123014
- Bisson P.A., Montgomery D.R., Buffington J.M. 2007. Valley segments, stream reaches, and channel units // Methods in stream ecology. San Diego: Acad. Press. P. 23–49. https://doi.org/10.1016/B978-012332908-0.50004-8
- Bisson P.A., Dunham J.B., Reeves G.H. 2009. Freshwater ecosystems and resilience of Pacific salmon: habitat management based on natural variability // Ecol. Soc. V. 14. № 1. Article 45. https://doi.org/10.5751/ES-02784-140145
- Bolnick D.I. 2009. Hybridization and speciation in centrarchids // Centrarchid fishes: diversity, biology, and conservation. Hoboken: Blackwell Publ. P. 39–69. https://doi.org/10.1002/9781444316032.ch2
- Boyer M.C., Muhlfeld C.C., Allendorf F.W. 2008. Rainbow trout (Oncorhynchus mykiss) invasion and the spread of hybridization with native westslope cutthroat trout (Oncorhynchus clarkii lewisi) // Can. J. Fish. Aquat. Sci. V. 65. № 4. P. 658–669. https://doi.org/10.1139/f08-001
- Bozeman B., Grossman G. 2019. Foraging behaviour and optimal microhabitat selection in Yukon River Basin nonanadromous Dolly Varden Charr (Salvelinus malma) // Ecol. Freshw. Fish. V. 28. № 4. P. 586–601. https://doi.org/10.1111/eff.12477
- Broughton R.E., Vedala K.C., Crowl T.M., Ritterhouse L.L. 2011. Current and historical hybridization with differential introgression among three species of cyprinid fishes (genus Cyprinella) // Genetica. V. 139. № 5. P. 699–707. https://doi.org/10.1007/s10709-011-9578-9
- Campton D.E. 1987. Natural hybridization and introgression in fishes: methods of detection and genetic interpretations // Population genetics and fishery management. Caldwell: Blackburn Press. P. 161–192.
- Chevassus B. 1979. Hybridization in salmonids: results and perspectives // Aquaculture. V. 17. № 2. P. 113–128. https://doi.org/10.1016/0044-8486(79)90047-4
- Cunjak R.A. 1988. Behaviour and microhabitat of young Atlantic salmon (Salmo salar) during winter // Can. J. Fish. Aquat. Sci. V. 45. № 12. P. 2156–2160. https://doi.org/10.1139/f88-250
- DeMarais B.D., Dowling T.E., Douglas M.E. et al. 1992. Origin of Gila seminuda (Teleostei: Cyprinidae) through introgressive hybridization: implications for evolution and conservation // Proc. Natl. Acad. Sci. USA. V. 89. № 7. P. 2747–2751. https://doi.org/10.1073/pnas.89.7.2747
- Detenbeck N.E., DeVore P.W., Niemi G.J., Lima A. 1992. Recovery of temperate-stream fish communities from disturbance: a review of case studies and synthesis of theory // Environ. Manag. V. 16. № 1. P. 33–53. https://doi.org/10.1007/BF02393907
- Dunning J.B., Danielson B.J., Pulliam H.R. 1992. Ecological processes that affect populations in complex landscapes // Oikos. V. 65. № 1. P. 169–175. https://doi.org/10.2307/3544901
- Epifanio J., Philipp D. 2000. Simulating the extinction of parental lineages from introgressive hybridization: the effects of fitness, initial proportions of parental taxa, and mate choice // Rev. Fish Biol. Fish. V. 10. № 3. P. 339–354. https://doi.org/10.1023/A:1016673331459
- Fausch K.D. 1984. Profitable stream positions for salmonids: relating specific growth rate to net energy gain // Can. J. Zool. V. 62. № 3. P. 441–451. https://doi.org/10.1139/z84-067
- Fausch K.D. 1988. Test of competitions between native and introduced salmonids in streams: what have we learned? // Can. J. Fish. Aquat. Sci. V. 45. № 12. P. 2238–2246. https://doi.org/10.1139/f88-260
- Fausch K.D., Young, M.K. 1995. Evolutionary significant units and movement of resident stream fishes: a cautionary tale // Am. Fish. Soc. Symp. V. 17. P. 360–370.
- Fausch K.D., Nakano S., Ishigaki K. 1994. Distribution of two congeneric charrs in streams of Hokkaido Island, Japan: considering multiple factors across scales // Oecologia. V. 100. № 1. P. 1–12. https://doi.org/10.1007/BF00317124
- Fausch K.D., Nakano S., Kitano S. 1997. Experimentally induced foraging mode shift by sympatric charrs in a Japanese mountain stream // Behav. Ecol. V. 8. № 4. P. 414–420. https://doi.org/10.1093/beheco/8.4.414
- Fausch K.D., Nakano S., Kitano S. et al. 2021. Interspecific social dominance networks reveal mechanisms promoting coexistence in sympatric charrs in Hokkaido, Japan // J. Anim. Ecol. V. 90. № 2. P. 515–527. http://doi.org/10.1111/1365-2656.13384
- Fitzpatrick B.M., Shaffer H.B. 2007. Hybrid vigor between native and introduced salamanders raises new challenges for conservation // Proc. Natl. Acad. Sci. USA. V. 104. № 40. P. 15793–15798. https://doi.org/10.1073/pnas.0704791104
- Fitzpatrick B.M., Johnson J.R., Kump D.K. et al. 2010. Rapid spread of invasive genes into a threatened native species // Ibid. V. 107. № 8. P. 3606–3610. https://doi.org/10.1073/pnas.0911802107
- Fukui S., Koizumi I. 2020. Hybrids as potential mediators spreading non‐native genes: comparison of survival, growth, and movement among native, introduced and their hybrid salmonids // Ecol. Freshw. Fish. V. 29. № 2. P. 280–288. https://doi.org/10.1111/eff.12513
- Fukui S., May‐McNally S.L., Katahira H. et al. 2016. Temporal change in the distribution and composition of native, introduced, and hybrid charrs in northern Japan // Hydrobiologia. V. 783. № 1. P. 309–316. https://doi.org/10.1007/s10750-016-2688-8
- Fukui S., May‐McNally S.L., Taylor E.B., Koizumi I. 2018. Maladaptive secondary sexual characteristics reduce the reproductive success of hybrids between native and non‐native salmonids // Ecol. Evol. V. 8. № 23. P. 12173–12182. https://doi.org/10.1002/ece3.4676
- Gowan C., Fausch K.D. 2002. Why do foraging stream salmonids move during summer? // Environ. Biol. Fish. V. 64. № 1. P. 139–153. https://doi.org/10.1023/A:1016010723609
- Grant P.R., Grant B.R. 2002. Unpredictable evolution in a 30-year study of Darwin’s finches // Science. V. 296. № 5568. P. 707–711. https://doi.org/10.1126/science.1070315
- Grant P.R., Grant B.R. 2006. Evolution of character displacement in Darwin’s finches // Ibid. V. 313. № 5784. P. 224–226. https://doi.org/10.1126/science.1128374
- Grossman G.D., Hill J., Petty J.T. 1995. Observations on habitat structure, population regulation, and habitat use with respect to evolutionary significant units: a landscape perspective for lotic systems // Am. Fish. Soc. Symp. V. 17. P. 381–391.
- Harvey B.C., Railsback S.F. 2009. Exploring the persistence of stream-dwelling trout populations under alternative real-world turbidity regimes with an individual-based model // Trans. Am. Fish. Soc. V. 138. № 2. P. 348–360. https://doi.org/10.1577/T08-068.1
- Harvey B.C., Stewart A.J. 1991. Fish size and habitat depth relationships in headwater streams // Oecologia. V. 87. № 3. P. 336–342. https://doi.org/10.1007/BF00634588
- Hasegawa K., Yamamoto T., Murakami M., Maekawa K. 2004. Comparison of competitive ability between native and introduced salmonids: evidence from pairwise contests // Ichthyol. Res. V. 51. № 3. P. 191–194. https://doi.org/10.1007/s10228-004-0214-x
- Hasselman D.J., Argo E.E., McBride M.C. et al. 2014. Human disturbance causes the formation of a hybrid swarm between two naturally sympatric fish species // Mol. Ecol. V. 23. № 5. P. 1137–1152. https://doi.org/10.1111/mec.12674
- Hayes D.B., Ferreri C.P., Taylor W.W. 1996. Linking fish habitat to their population dynamics // Can. J. Fish. Aquat. Sci. V. 53. Suppl. 1. P. 383–390. https://doi.org/10.1139/f95-273
- Hayes J.W., Hughes N.F., Kelly L.H. 2007. Process‐based modelling of invertebrate drift transport, net energy intake and reach carrying capacity for drift‐feeding salmonids // Ecol. Model. V. 207. № 2–4. P. 171–188. https://doi.org/10.1016/j.ecolmodel.2007.04.032
- Hayes J.W., Goodwin E., Shearer K.A. et al. 2016. Can weighted useable area predict flow requirements of drift‐feeding salmonids? Comparison with a net rate of energy intake model incorporating drift–flow processes // Trans. Am. Fish. Soc. V. 145. № 3. P. 589–609. https://doi.org/10.1080/00028487.2015.1121923
- Heggenes J., Borgstrøm R. 1991. Effect of habitat types on survival, spatial distribution and production of an allopatric cohort of Atlantic salmon, Salmo salar L., under conditions of low competition // J. Fish Biol. V. 38. № 2. P. 267–280. https://doi.org/10.1111/j.1095-8649.1991.tb03113.x
- Hewitt G.M. 2001. Speciation, hybrid zones and phylogeography – or seeing genes in space and time // Mol. Ecol. V. 10. № 3. P. 537–549. https://doi.org/10.1046/j.1365-294x.2001.01202.x
- Hewitt G.M. 2011. Quaternary phylogeography: the roots of hybrid zones // Genetica. V. 139. № 5. P. 617–638. https://doi.org/10.1007/s10709-011-9547-3
- Keller I., Wagner C.E., Greuter L. et al. 2013. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes // Mol. Ecol. V. 22. № 11. P. 2848–2863. https://doi.org/10.1111/mec.12083
- Kirczuk L., Domagała J., Dziewulska K. 2012. Spermatogenesis in reciprocal hybrids of Atlantic salmon (Salmo salar L., 1758) and sea trout (Salmo trutta trutta L., 1758) during their freshwater period // J. Appl. Ichthyol. V. 28. № 6. P. 906–913. https://doi.org/10.1111/jai.12081
- Kishi D., Maekawa K. 2009. Stream-dwelling Dolly Varden (Salvelinus malma) density and habitat characteristics in stream sections installed with low-head dams in the Shiretoko Peninsula, Hokkaido, Japan // Ecol. Res. V. 24. № 4. P. 873–880. https://doi.org/10.1007/s11284-008-0562-5
- Kitano S., Ohdachi S., Koizumi I., Hasegawa K. 2014. Hybridization between native white-spotted charr and nonnative brook trout in the upper Sorachi River, Hokkaido, Japan // Ichthyol. Res. V. 61. № 1. P. 1–8. https://doi.org/10.1007/s10228-013-0362-y
- Kocik J.F., Ferreri C.P. 1998. Juvenile production variation in salmonids: population dynamics, habitat, and the role of spatial relationships // Can. J. Fish. Aquat. Sci. V. 55. Suppl. 1. P. 191–200. https://doi.org/10.1139/d98-015
- Kocik J.F., Taylor W.W. 1995. Effect of juvenile steelhead (Oncorhynchus mykiss) on age-0 and age-1 brown trout (Salmo trutta) survival and growth in a sympatric nursery stream // Ibid. V. 52. № 1. P. 105–114. https://doi.org/10.1139/f95-444
- Kocik J.F., Taylor W.W. 1996. Effect of juvenile steelhead on juvenile brown trout habitat use in a low-gradient Great Lakes tributary // Trans. Am. Fish. Soc. V. 125. № 2. P. 244–252. https://doi.org/10.1577/1548-8659(1996)125<0244:EOJSOJ>2.3.CO;2
- Koizumi I., Kanazawa Y., Tanaka Y. 2013. The fishermen were right: experimental evidence for tributary refuge hypothesis during floods // Zool. Sci. V. 30. № 5. P. 375–379. https://doi.org/10.2108/zsj.30.375
- Kovach R.P., Muhlfeld C.C., Boyer M.C. et al. 2015. Dispersal and selection mediate hybridization between a native and invasive species // Proc. R. Soc. B. V. 282. № 1799. Article 20142454. https://doi.org/10.1098/rspb.2014.2454
- Krueger C.C., May B. 1991. Ecological and genetic effects of salmonid introductions in North America // Can. J. Fish. Aquat. Sci. V. 48. Suppl. 1. P. 66–77. https://doi.org/10.1139/f91-305
- Leary R.F., Allendorf F.W., Sage G.K. 1995. Hybridization and introgression between introduced and native fish // Am. Fish. Soc. Symp. V. 15. P. 91–101.
- Mallet J. 2007. Hybrid speciation // Nature. V. 446. № 7133. P. 279–283. https://doi.org/10.1038/nature05706
- Misawa K., Yoneda T., Inoue S. et al. 2007. Interspecific competition for food resources between Dolly Varden (Salvelinus malma) and rainbow trout (Oncorhynchus mykiss) in the Satsunai River reservoir, upper Tokachi River System, Hokkaido // Jpn. J. Ichthyol. V. 54. № 1. P. 1–13. https://doi.org/10.11369/jji1950.54.1
- Morita K. 2022. Ups and downs of non-native and native stream-dwelling salmonids: lessons from two contrasting rivers // Ecol. Res. V. 37. № 2. P. 188–196. https://doi.org/10.1111/1440-1703.12288
- Morita K., Tsuboi J.-I., Matsuda H. 2004. The impact of exotic trout on native charr in a Japanese stream // J. Appl. Ecol. V. 41. № 5. P. 962–972. https://doi.org/10.1111/j.0021-8901.2004.00927.x
- Morita K., Arai T., Kishi D., Tsuboi J. 2005. Small anadromous Dolly Varden Salvelinus malma at the southern limits of its distribution // J. Fish Biol. V. 66. № 4. P. 1187–1192. https://doi.org/10.1111/j.0022-1112.2005.00672.x
- Muhlfeld C.C., McMahon T.E., Belcer D., Kershner J.L. 2009. Spatial and temporal spawning dynamics of native westslope cutthroat trout, Oncorhynchus clarkii lewisi, introduced rainbow trout, Oncorhynchus mykiss, and their hybrids // Can. J. Fish. Aquat. Sci. V. 66. № 7. P. 1153–1168. https://doi.org/10.1139/F09-073
- Muhlfeld C.C., Kovach R.P., Jones L.A. et al. 2014. Invasive hybridization in a threatened species is accelerated by climate change // Nat. Clim. Change. V. 4. № 7. P. 620–624. https://doi.org/10.1038/nclimate2252
- Muhlfeld C.C., D’Angelo V.S., Downs C. et al. 2016. Genetic status and conservation of westslope cutthroat trout in Glacier National Park // Trans. Am. Fish. Soc. V. 145. № 5. P. 1093–1109. https://doi.org/10.1080/00028487.2016.1173587
- Muhlfeld C.C., Kovach R.P., Al‐Chokhachy R. et al. 2017. Legacy introductions and climatic variation explain spatiotemporal patterns of invasive hybridization in a native trout // Glob. Change Biol. V. 23. № 11. P. 4663–4674. https://doi.org/10.1111/gcb.13681
- Muka T. 2001. Hybridization and introgression in the speciation process of fishes // Jpn. J. Ichthyol. V. 48. № 1. P. 1–18. https://doi.org/10.11369/jji1950.48.1
- Nakano S. 1995a. Competitive interactions for foraging microhabitats in a size-structured interspecific dominance hierarchy of two sympatric stream salmonids in a natural habitat // Can. J. Zool. V. 73. № 10. P. 1845–1854. https://doi.org/10.1139/z95-217
- Nakano S. 1995b. Individual differences in resource use, growth and emigration under the influence of a dominance hierarchy in fluvial red-spotted masu salmon in a natural habitat // J. Anim. Ecol. V. 64. № 1. P. 75–84. https://doi.org/10.2307/5828
- Nakano S., Furukawa-Tanaka T. 1994. Intra- and interspecific dominance hierarchies and variation in foraging tactics of two species of stream-dwelling chars // Ecol. Res. V. 9. № 1. P. 9–20. https://doi.org/10.1007/BF02347237
- Nakano S., Kitano F., Maekawa K. 1996. Potential fragmentation and loss of thermal habitats for charrs in the Japanese archipelago due to climatic warming // Freshw. Biol. V. 36. № 3. P. 711–722. https://doi.org/10.1046/j.1365-2427.1996.d01-516.x
- Nakano S., Miyasaka H., Kuhara N. 1999. Terrestrial–aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web // Ecology. V. 80. № 7. P. 2435–2441. https://doi.org/10.1890/0012-9658(1999)080[2435:TALRAI]2.0.CO;2
- Nakano S., Fausch K.D., Koizumi I. et al. 2020. Evaluating a pattern of ecological character displacement: charr jaw morphology and diet diverge in sympatry versus allopatry across catchments in Hokkaido, Japan // Biol. J. Linn. Soc. V. 129. № 2. P. 356–378. https://doi.org/10.1093/biolinnean/blz183
- Nathan R. 2001. The challenges of studying dispersal // Trends Ecol. Evol. V. 16. № 9. P. 481–483. https://doi.org/10.1016/S0169-5347(01)02272-8
- Petty J.T., Grossman G.D. 2010. Giving‐up densities and ideal pre-emptive patch use in a predatory benthic stream fish // Freshw. Biol. V. 55. № 4. P. 780–793. https://doi.org/10.1111/j.1365-2427.2009.02321.x
- Pianka E.R. 1969. Habitat specificity, speciation, and species density in Australian desert lizards // Ecology. V. 50. № 3. P. 498–502. https://doi.org/10.2307/1933908
- Pocheville A. 2015. The ecological niche: history and recent controversies // Handbook of evolutionary thinking in the sciences. N.Y.: Springer. P. 547–586. https://doi.org/10.1007/978-94-017-9014-7_26
- Poole G.C. 2002. Fluvial landscape ecology: addressing uniqueness within the river discontinuum // Freshw. Biol. V. 47. № 4. P. 641–660. https://doi.org/10.1046/j.1365-2427.2002.00922.x
- Pyron R.A., Costa G.C., Patten M.A., Burbrink F.T. 2015. Phylogenetic niche conservatism and the evolutionary basis of ecological speciation // Biol. Rev. V. 90. № 4. P. 1248–1262. https://doi.org/10.1111/brv.12154
- Rahman M.A., Lee S.-G., Yusoff F.M. et al. 2018. Hybridization and its application in aquaculture // Sex control in aquaculture. Chichester: John Wiley and Sons Ltd. P. 163–178. https://doi.org/10.1002/9781119127291.ch7
- Railsback S.F., Harvey B.C. 2002. Analysis of habitat-selection rules using an individual-based model // Ecology. V. 83. № 7. P. 1817–1830. https://doi.org/10.1890/0012-9658(2002)083[1817:AOHSRU]2.0.CO;2
- Railsback S.F., Lamberson R.H., Harvey B.C., Duffy W.E. 1999. Movement rules for individual-based models of stream fish // Ecol. Model. V. 123. № 2–3. P. 73–89. https://doi.org/10.1016/S0304-3800(99)00124-6
- Railsback S.F., Harvey B.C., Jackson S.K., Lamberson R.H. 2009. InStream: the individual-based stream trout research and environmental assessment model // Gen. Techn. Rep. PSW-GTR-218. Albany: U.S. Department of Agriculture et al., 254 p. https://doi.org/10.2737/PSW-GTR-218
- Railsback S.F., Harvey B.C., Kupferberg S.J. et al. 2016. Modeling potential river management conflicts between frogs and salmonids // Can. J. Fish. Aquat. Sci. V. 73. № 5. P. 773–784. https://doi.org/10.1139/cjfas-2015-0267
- Rholf J.F. 1993. NTSYS-pc: numerical taxonomy and multivariate analysis system. Version 2.2. N.Y.: Exeter Softw. Publ., 43 p.
- Rhymer J.M., Simberloff D. 1996. Extinction by hybridization and introgression // Annu. Rev. Ecol. Syst. V. 27. P. 83–109. https://doi.org/10.1146/annurev.ecolsys.27.1.83
- Rieman B.E., Peterson J.T., Myers D.L. 2006. Have brook trout (Salvelinus fontinalis) displaced bull trout (Salvelinus confluentus) along longitudinal gradients in central Idaho streams? // Can. J. Fish. Aquat. Sci. V. 63. № 1. P. 63–78. https://doi.org/10.1139/f05-206
- Rosenfeld J.S., Taylor J. 2009. Prey abundance, channel structure and the allometry of growth rate potential for juvenile trout // Fish. Manag. Ecol. V. 16. № 3. P. 202–218. https://doi.org/10.1111/j.1365-2400.2009.00656.x
- Schiemer F., Spindler T., Wintersberger H. et al. 1991. Fish fry associations: important indicators for the ecological status of large rivers // SIL Proc., 1922–2010. V. 24. № 4. P. 2497–2500. https://doi.org/10.1080/03680770.1989.11899997
- Schlosser I.J. 1991. Stream fish ecology: a landscape perspective // BioScience. V. 41. № 10. P. 704–712. https://doi.org/10.2307/1311765
- Schlosser I.J. 1995. Critical landscape attributes that influence fish population dynamics in headwater streams // Hydrobiologia. V. 303. № 1. P. 71–81. https://doi.org/10.1007/BF00034045
- Schluter D. 1994. Experimental evidence that competition promotes divergence in adaptive radiation // Science. V. 266. № 5186. P. 798–801. https://doi.org/10.1126/science.266.5186.798
- Schluter D. 2000. The ecology of adaptive radiation. N.Y.: Oxford Univ. Press, 296 p.
- Schoener T.W. 1989. The ecological niche // Ecological concepts: the contribution of ecology to an understanding of the natural world. Cambridge: Blackwell Sci. Publ. P. 79–113.
- Seehausen O. 2004. Hybridization and adaptive radiation // Trends Ecol. Evol. V. 19. № 4. P. 198–207. https://doi.org/10.1016/j.tree.2004.01.003
- Snorrason S.S., Skúlason S. 2004. Adaptive speciation in northern freshwater fishes // Adaptive speciation. Cambridge: Cambridge Univ. Press. P. 210–228.
- Stanford J.A., Lorang M.S., Hauer F.R. 2005. The shifting habitat mosaic of river ecosystems // SIL Proc., 1922–2010. V. 29. № 1. P. 123–136. https://doi.org/10.1080/03680770.2005.11901979
- Stuart Y.E., Campbell T.S., Hohenlohe P.A. et al. 2014. Rapid evolution of a native species following invasion by a congener // Science. V. 346. № 6208. P. 463–466. https://doi.org/10.1126/science.1257008
- Suzuki R., Fukuda Y. 1971. Growth and survival of F1 hybrids among salmonid fishes // Bull. Freshw. Res. Lab. Tokyo. V. 21. № 2. P. 117–138. https://doi.org/10.11501/1746059
- Taniguchi Y., Nakano S. 2000. Condition-specific competition: implications for the altitudinal distribution of stream fishes // Ecology. V. 81. № 7. P. 2027–2039. https://doi.org/10.1890/0012-9658(2000)081[2027:CSCIFT]2.0.CO;2
- Taniguchi Y., Rahel F.J., Novinger D.C., Gerow K.G. 1998. Temperature mediation of competitive interactions among three fish species that replace each other along longitudinal stream gradients // Can. J. Fish. Aquat. Sci. V. 55. № 8. P. 1894–1901. https://doi.org/10.1139/f98-072
- Taniguchi Y., Kishi D., Kawaguchi Y. 2002. The current status of stream salmonids in 37 streams of Shiretoko Peninsula, Hokkaido, Japan: effects of instream artificial structures // Bull. Shiretoko Mus. V. 23. P.37–46
- Taylor S.A., Larson E.L. 2019. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature // Nat. Ecol. Evol. V. 3. № 2. P. 170–177. https://doi.org/10.1038/s41559-018-0777-y
- Taylor S.A., Larson E.L., Harrison R.G. 2015. Hybrid zones: windows on climate change // Trends Ecol. Evol. V. 30. № 7. P. 398–406. https://doi.org/10.1016/j.tree.2015.04.010
- Thompson J.R., Taylor M.P., Fryirs K.A., Brierleyet G.J. 2001. A geomorphological framework for river characterization and habitat assessment // Aquat. Conserv. Mar. Freshw. Ecosyst. V. 11. № 5. P. 373–389. https://doi.org/10.1002/aqc.467
- Turner D., Williams D.D. 2000. Invertebrate movements within a small stream: density dependence or compensating for drift? // Int. Rev. Hydrobiol. V. 85. № 2–3. P. 141–156.
- https://doi.org/10.1002/(SICI)1522-2632(200004)85:2/3 <141::AID-IROH141>3.0.CO;2-P
- Wiens J.J. 2004. Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species // Evolution. V. 58. № 1. P. 193–197. https://doi.org/10.1111/j.0014-3820.2004.tb01586.x
Supplementary files
