Are there atlantic species of the genus Trachinotus (Carangidae), T. falcatus and T. ovatus, in Asian mariculture?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

According to numerous scientific publications and commercial offers, two species of pompano, Trachinotus blochii and T. falcatus, are currently cultivated in the mariculture in Taiwan and Southeast Asia, particularly, in Vietnam. It is also believed that T. blochii and T. ovatus are grown in aquatic farms of mainland China. Taxonomic identification by morphological characters of pompano species from a farm in the southern part of Central Vietnam and the results of the DNA barcoding showed that one of these species is indeed T. blochii, while the second one is not T. falcatus, but T. anak. Analysis of the literature data did not reveal any confirmed evidence of either introduction or presence of T. falcatus and T. ovatus in Asian waters. Moreover, the comparison of the generated nucleotide sequences with the sequences from genetic databases (GenBank and BOLD), allowed us to conclude that these species are unlikely to be present in mariculture, and all the mentions of them in numerous scientific publications from this region are the result of misidentification of T. anak.

About the authors

A. M. Shadrin

Lomonosov Moscow State University

Author for correspondence.
Email: shadrin-mail@mail.ru
Russian Federation, Moscow

A. V. Semenova

Lomonosov Moscow State University; Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: shadrin-mail@mail.ru
Russian Federation, Moscow; Moscow

Thi Hai Thanh Nguyen

Coastal Branch of the Joint Vietnam-Russia Tropical Science and Technology Research Center

Email: shadrin-mail@mail.ru
Viet Nam, Nha Trang

References

  1. Bauchot M.L. 2003. Carangidae // The fresh and brackish water fishes of West Africa. V. 1. Paris: IRD Éditions. P. 464–483.
  2. Collins R.A., Cruickshank R.H. 2013. The seven deadly sins of DNA barcoding // Mol. Ecol. Resour. V. 13. № 6. P. 969–975. https://doi.org/10.1111/1755-0998.12046
  3. Costa F.O., Landi M., Martins R. et al. 2012. A ranking system for reference libraries of DNA barcodes: application to marine fish species from Portugal // PloS One. V. 7. № 4. Article e35858. https://doi.org/10.1371/journal.pone.0035858
  4. Crabtree R.E., Hood P.B., Snodgrass D. 2002. Age, growth, and reproduction of permit (Trachinotus falcatus) in Florida waters // Fish. Bull. V. 100. № 1. P. 26–34.
  5. Du T., Luo J. 2004. Comparison study on artificial breeding between Trachinotus ovatus and Trachinotus blochii // Mar. Sci. V. 28. № 7. P. 76–78.
  6. Erikson U., Truong H.T.M., Le D.V. et al. 2019. Harvesting procedures, welfare and shelf life of ungutted and gutted shortfin pompano (Trachinotus falcatus) stored in ice // Aquaculture. V. 498. P. 236–245. https://doi.org/10.1016/j.aquaculture.2018.06.085
  7. FAO. 2023a. Trachinotus blochii. Cultured Aquatic Species Information Programme (https://www.fao.org/fishery/en/culturedspecies/trachinotus_spp/en. Version 10/2023).
  8. FAO. 2023b. Trachinotus falcatus (https://www.fao.org/fishery/en/introsp/8550/en. Version 10/2023).
  9. FAO. 2023c. Trachinotus falcatus (https://www.fao.org/fishery/en/introsp/2681/en. Version 10/2023).
  10. Fricke R., Eschmeyer W.N., van der Laan R. (eds.). 2023. Eschmeyer’s catalog of fishes: genera, species, references (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Version 10/2023).
  11. Hoff F., Rowell C., Pulver T. 1972. Artificially induced spawning of the Florida pompano under controlled conditions // Proc. World Maric. Soc. V. 3. № 1–4. P. 53–64. https://doi.org/10.1111/j.1749-7345.1972.tb00047.x
  12. Hoff F.H., Mountain J., Frakes T., Halscott K. 1978. Spawning, oocyte development and larval rearing of the Florida pompano, Trachinotus carolinus // Ibid. V. 9. № 1–4. P. 279–297. https://doi.org/10.1111/j.1749-7345.1978.tb00252.x
  13. Holder P.E., Griffin L.P., Adams A.J. et al. 2020. Stress, predators, and survival: exploring permit (Trachinotus falcatus) catch-and-release fishing mortality in the Florida Keys // J. Exp. Mar. Biol. Ecol. V. 524. Article 151289. https://doi.org/10.1016/j.jembe.2019.151289
  14. Ivanova N.V., Zemlak T.S., Hanner R.H., Hebert P.D.N. 2007. Universal primer cocktails for fish DNA barcoding // Mol. Ecol. Notes. V. 7. № 4. P. 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
  15. Jory D.E., Iversen E.S., Lewis R.H. 1985. Culture of fishes of the genus Trachinotus (Carangidae) in the western Atlantic: prospects and problems // J. World Maric. Soc. V. 16. № 1–4. P. 87–94. https://doi.org/10.1111/j.1749-7345.1985.tb00190.x
  16. Keskİn E., Atar H.H. 2013. DNA barcoding commercially important fish species of Turkey // Mol. Ecol. Resour. V. 13. № 5. P. 788–797. https://doi.org/10.1111/1755-0998.12120
  17. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences // J. Mol. Evol. V. 16. P. 111–120. https://doi.org/10.1007/BF01731581
  18. Kou H., Xu S., Wang A.-L. 2015. Effect of replacing canola meal for fish meal on the growth, digestive enzyme activity, and amino acids, of ovate pompano, Trachinotus ovatus // Isr. J. Aquac. Bamidgeh. V. 67. Article 1144. https://doi.org/10.46989/001c.20720
  19. Landi M., Dimech M., Arculeo M. et al. 2014. DNA barcoding for species assignment: the case of Mediterranean marine fishes // PloS One. V. 9. № 9. Article e106135. https://doi.org/10.1371/journal.pone.0106135
  20. Lazado C.C., Lund I., Pedersen P.B., Nguyen H.Q. 2015. Humoral and mucosal defense molecules rhythmically oscillate during a light–dark cycle in permit, Trachinotus falcatus // Fish Shellfish Immunol. V. 47. № 2. P. 902–912. https://doi.org/10.1016/j.fsi.2015.10.037
  21. Lazado C.C., Pedersen P.B., Nguyen H.Q., Lund I. 2017. Rhythmicity and plasticity of digestive physiology in a euryhaline teleost fish, permit (Trachinotus falcatus) // Comp. Biochem. Physiol. Pt. A. Mol. Integr. Physiol. V. 212. P. 107–116. https://doi.org/10.1016/j.cbpa.2017.07.016
  22. Lei C., Fan B., Tian J. et al. 2021. PPARγ regulates fabp4 expression to increase DHA content in golden pompano (Trachinotus ovatus) hepatocytes // Brit. J. Nutr. V. 127. № 1. P. 3–11. https://doi.org/10.1017/S0007114521000775
  23. Li X., Shen X., Chen X. et al. 2018. Detection of potential problematic Cytb gene sequences of fishes in GenBank // Front. Genet. V. 9. Article 30. https://doi.org/10.3389/fgene.2018.00030
  24. Liao I.C., Su H.M., Chang E.Y. 2001. Techniques in finfish larviculture in Taiwan // Aquaculture. V. 200. № 1–2. P. 1–31. https://doi.org/10.1016/S0044-8486(01)00692-5
  25. Lin P.-L., Shao K.-T. 1999. A review of the carangid fishes (Family Carangidae) from Taiwan with descriptions of four new records // Zool. Stud. V. 38. № 1. P. 33–68.
  26. Lin H., Chen X., Chen S. et al. 2012. Replacement of fish meal with fermented soybean meal in practical diets for pompano Trachinotus ovatus // Aquac. Res. V. 44. № 1. P. 151–156. https://doi.org/10.1111/j.1365-2109.2011.03000.x
  27. Liu C., Chen C. 2009. The biology and cultured technology of Pompano (Trachinotus ovatus) // Shandong Fish. V. 26. P. 32–33.
  28. Liu X.-W., Wang H.-L., Zhang H.-T., Xu D. 2011. Optimum dietary protein to energy ratio in juvenile pompano, Trachinotus ovatus // Fish. Sci. V. 30. P. 136–139.
  29. Liu B., Guo H., Zhu K. et al. 2019. Salinity effect on intestinal microbiota in golden pompano Trachinotus ovatus (Linnaeus, 1758) // Isr. J. Aquac. Bamidgeh. V. 71. Article 1538. https://doi.org/10.46989/001c.20995
  30. Liu Y.-M., Fu Y.-W., Hou T.-L. et al. 2022. Neobenedenia girellae (Monogenea) infection on cultured golden pompano Trachinotus ovatus in Zhanjiang, China // Aquaculture. V. 548. Pt. 1. Article 737669. https://doi.org/10.1016/j.aquaculture.2021.737669
  31. Ma Z., Guo H., Zheng P. et al. 2016a. Effect of salinity on the rearing performance of juvenile golden pompano Trachinotus ovatus (Linnaeus 1758) // Aquac. Res. V. 47. № 6. P. 1761–1769. https://doi.org/10.1111/are.12633
  32. Ma Z., Zhang N., Qin J.G. et al. 2016b. Water temperature induces jaw deformity and bone morphogenetic proteins (BMPs) gene expression in golden pompano Trachinotus ovatus larvae // SpringerPlus. V. 5. Article 1475. https://doi.org/10.1186/s40064-016-3142-0
  33. Meng D., Guo M., Qian Y., Han G. 2017. Occurrence and dietary exposure assessment of PFOS and PFOA in cultured Trachinotus ovatus in China // J. Environ. Sci. Health. Pt. B. V. 52. № 9. P. 690–698. https://doi.org/10.1080/03601234.2017.1331672
  34. Nguyen H.Q., Chu T.C., Nguyen T.T.L., Lund I. 2018. Effects of dietary digestible protein and energy levels on growth performance, feed utilization, and body composition of juvenile permit, Trachinotus falcatus (Linnaeus, 1758) // J. World Aquac. Soc. V. 49. № 5. P. 943–952. https://doi.org/10.1111/jwas.12433
  35. Santini F., Carnevale G. 2015. First multilocus and densely sampled timetree of trevallies, pompanos and allies (Carangoidei, Percomorpha) suggests a Cretaceous origin and Eocene radiation of a major clade of piscivores // Mol. Phylogenet. Evol. V. 83. P. 33–39. https://doi.org/10.1016/j.ympev.2014.10.018
  36. Smith-Vaniz W.F. 1984. Carangidae // FAO species identification sheets for fishery purposes. Western Indian Ocean. Fishing Area 51. V. 1. Rome: FAO. Pag. var.
  37. Smith-Vaniz W.F. 1986. Carangidae // Fishes of the North-Eastern Atlantic and the Mediterranean. V. II. Paris: UNESCO. P. 815–844.
  38. Smith-Vaniz W.F. 1999. Carangidae. Jacks and scads (also trevallies, queenfishes, runners, amberjacks, pilotfishes, pampanos, etc.) // FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. V. 4. Bony fishes. Pt. 2 (Mugilidae to Carangidae). Rome: FAO. P. 2659–2756.
  39. Smith-Vaniz W.F. 2002. Carangidae // FAO species identification guide for fishery purposes and American Society of Ichthyologists and Herpetologists special publication. № 5. The living marine resources of the Western Central Atlantic. V. 3. Bony fishes. Pt. 2 (Opistognathidae to Molidae), sea turtles and marine mammals. Rome: FAO. P. 1426–1466.
  40. Smith-Vaniz W.F., Berry F.H. 1981. Carangidae. // FAO species identification sheets for fishery purposes. Eastern Central Atlantic. Fishing area 34, 47 (in part). V. 1. Rome: FAO. Pag. var.
  41. Smith-Vaniz W.F., Walsh S.J. 2019. Indo-West Pacific species of Trachinotus with spots on their sides as adults, with description of a new species endemic to the Marquesas Islands (Teleostei: Carangidae) // Zootaxa. V. 4651. № 1. P. 1–37. https://doi.org/10.11646/zootaxa.4651.1.1
  42. Smith-Vaniz W.F., Kaufman L.S., Glowacki J. 1995. Species-specific patterns of hyperostosis in marine teleost fishes // Mar. Biol. V. 121. № 4. P. 573–580. https://doi.org/10.1007/BF00349291
  43. Sun L., Zhang D., Jian S. et al. 2013. Isolation and characterization of 21 polymorphic microsatellites in golden pompano Trachinotus ovatus // Conserv. Genet. Resour. V. 5. № 4. P. 1107–1109. https://doi.org/10.1007/s12686-013-9942-4
  44. Sun J., Liu G., Guo H. et al. 2020. Skeletal anomalies in cultured golden pompano Trachinotus ovatus at early stages of development // Dis. Aquat. Organ. V. 137. P. 195–204. https://doi.org/10.3354/dao03436
  45. Tamura K., Peterson D., Peterson N. et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods // Mol. Biol. Evol. V. 28. № 10. P. 2731–2739. https://doi.org/10.1093/molbev/msr121
  46. Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice // Nucleic Acids Res. V. 22. № 22. P. 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  47. Thouard E., Soletchnik P., Marion J.-P. 1990. Selection of finfish species for aquaculture development in Martinique (F.W.I.) // Aquaculture. V. 89. № 2. P. 193–197. https://doi.org/10.1016/0044-8486(90)90310-J
  48. Thu T.T.N., Hieu T.T.T., Dat N.T., Hung T.Q. 2016. Apparent digestibility of some commercial feeds for snubnose pompano, Trachinotus blochii // J. Fish. Environ. V. 40. № 2. P. 11–16.
  49. Thu P.T., Huang W.-C., Chou T.-K. et al. 2019. DNA barcoding of coastal ray-finned fishes in Vietnam // PloS One. V. 14. № 9. Article e0222631. https://doi.org/10.1371/journal.pone.0222631
  50. Tran T.T.H., Luu T.H.G., Vu T.T. et al. 2019. Identification and genetic assessment of the pompano based on the molecular markers // Vietnam Agric. Sci. J. V. 17. P. 204–215.
  51. Weirich C.R., Riley K.L., Riche M. et al. 2021. The status of Florida pompano, Trachinotus carolinus, as a commercially ready species for U.S. marine aquaculture // J. World Aquac. Soc. V. 52. № 3. P. 731–763. https://doi.org/10.1111/jwas.12809
  52. Welch A. 2013. Pompano. Trachinotus carolinus and Trachinotus blochii. Seafood Watch report. Monterey: Monterey Bay Aquarium, 72 p.
  53. Xie Z., Li S., Yao M. et al. 2013. The complete mitochondrial genome of the Trachinotus ovatus (Teleostei, Carangidae) // Mitochondrial DNA. V. 26. № 4. P. 644–646. https://doi.org/10.3109/19401736.2013.836516
  54. Xie Z.Z., Huang M.W., Xu W. et al. 2014. Nineteen polymorphic microsatellite markers developed for Trachinotus ovatus // Genet. Mol. Res. V. 13. № 4. P. 10518–10522. https://doi.org/10.4238/2014.december.12.13
  55. Yu C., Hu Z., Han B. et al. 2021. Intelligent measurement of morphological characteristics of fish using improved U-net // Electronics. V. 10. № 12. Article 1426. https://doi.org/10.3390/electronics10121426
  56. Zhang J., Hanner R. 2012. Molecular approach to the identification of fish in the South China Sea // PLoS One. V. 7. № 2. Article e30621. https://doi.org/10.1371/journal.pone.0030621
  57. Zhang X., Zhou H., Chang L. et al. 2018. Study of golden pompano (Trachinotus ovatus) freshness forecasting method by utilizing Vis/NIR spectroscopy combined with electronic nose // Int. J. Food Prop. V. 21. № 1. P. 1257–1269. https://doi.org/10.1080/10942912.2018.1440239
  58. Zhang D.-C, Guo L., Guo H.-Y. et al. 2019. Chromosome-level genome assembly of golden pompano (Trachinotus ovatus) in the family Carangidae // Sci. Data. V. 6. № 1. Article 216. https://doi.org/10.1038/s41597-019-0238-8

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».