The Problems of DNA-Barcoding the Shads of genus Alosa (Alosidae) of the Ponto-Caspian Basin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Numerous studies show that species identification of representatives of the genus Alosa using various genetic markers is often difficult and the search for more specific biomarkers is required. For the first time we analyzed polymorphism of COI gene fragment of mitochondrial DNA of two representatives of this genus (A. tanaica and A. kessleri), supplemented with new data on A. immaculata, from the waters of the Ponto-Caspian basin in comparative aspect with other representatives of the herring (Clupeoidea) genera Alosa, Clupea, Clupeonella, Sprattus, and Sardinops. The main result was the conclusion that within the genus Alosa, it is not possible to identify species using the marker used. On the one hand, specimens collected from morphologically distinct individuals and identified as different species have the same haplotypes. On the other hand, samples belonging to different species differ from each other by an insignificant number of nucleotide substitutions and do not form independent clades on the phylogram and haplotype network. This indicates the absence of genetic differentiation between the studied samples of herrings of genus Alosa into separate species and species groups when using DNA barcoding based on the COI gene. The reasons for such a phenomenon may be the following: 1) incorrect identification of species in catches, since shads (Alosidae) have high morphological flexibility and in many species, the main external morphological characters often overlap; 2) recent time of speciation by the standards of biological evolution for shads of genus Alosa; 3) difference in proportion of interspecific hybrids, which can vary significantly between populations of the same species.

Full Text

Restricted Access

About the authors

S. Yu. Orlova

Russian Federal Research Institute of Fisheries and Oceanography; Shirshov Institute of Oceanology of Russian Academy of Sciences

Email: orlov.am@ocean.ru
Russian Federation, Moscow; Moscow

O. R. Emelyanova

Russian Federal Research Institute of Fisheries and Oceanography; Lomonosov Moscow State University

Email: orlov.am@ocean.ru
Russian Federation, Moscow; Moscow

N. A. Nebesikhina

Azov-Black Sea Branch of the Russian Federal Research Institute of Fisheries and Oceanography

Email: orlov.am@ocean.ru
Russian Federation, Rostov-on-Don

N. I. Rabazanov

Dagestan State University; Caspian Institute of Biological Resources of the Dagestan Federal Research Center of the Russian Academy of Sciences

Email: orlov.am@ocean.ru
Russian Federation, Makhachkala, Republic of Dagestan; Makhachkala, Republic of Dagestan

A. M. Orlov

Shirshov Institute of Oceanology of Russian Academy of Sciences; Dagestan State University; Caspian Institute of Biological Resources of the Dagestan Federal Research Center of the Russian Academy of Sciences; Tomsk State University; Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences

Author for correspondence.
Email: orlov.am@ocean.ru
Russian Federation, Moscow; Makhachkala, Republic of Dagestan; Makhachkala, Republic of Dagestan; Tomsk; Moscow

References

  1. Богуцкая Н.Г., Насека А.М. 2004. Каталог бесчелюстных и рыб пресных и солоноватых вод России с номенклатурными и таксономическими комментариями. М.: Т-во науч. изд. КМК, 389 с.
  2. Богуцкая Н.Г., Кияшко П.В., Насека А.М., Орлова М.И. 2013. Определитель рыб и беспозвоночных Каспийского моря. Т. 1. Рыбы и моллюски. СПб.: Т-во науч. изд. КМК, 543 с.
  3. Васильева Е.Д. 2007. Рыбы Черного моря. Определитель морских, солоноватоводных, эвригалинных и проходных видов с цветными иллюстрациями, собранными С.В. Богородским. М.: Изд-во ВНИРО, 238 с.
  4. Васильева Е.Д., Лужняк В.А. 2013. Рыбы бассейна Азовского моря. Ростов н/Д: Изд-во ЮНЦ РАН, 272 с.
  5. Гаджикурбанов Т.Т., Зурхаева У.Д., Устарбекова Д.А. и др. 2012. Морфологическая характеристика сельдей в западной части Среднего Каспия // Изв. ДГПУ. Естественные и точные науки. № 3. С. 49–54.
  6. Гордеева Н.В., Шаховской И.Б. 2017. Применение ДНК-баркодинга для идентификации видов и филогенетических исследований летучих рыб (Exocoetidae) // Вопр. ихтиологии. Т. 57. № 2. С. 212–221. https://doi.org/10.7868/S0042875217020126
  7. Зубкова Т.С., Разинков В.П. 2022. Морские мигрирующие сельди Каспийского моря // Вопр. рыболовства. Т. 23. № 2. С. 51–62. https://doi.org/10.36038/0234-2774-2022-23-2-51-62
  8. Казанова И.И., Халдинова Н.А. 1940. Места и условия нереста каспийских сельдей в дельте Волги (по распределению их икры и личинок) // Тр. ВНИРО. Т. 14. С. 77–108.
  9. Казачков Г.В. 2004. О развитии отечественной таксономии сельдей рода Alosa (Pisces, Clupeiformes, Clupeidae), известных в XIX веке под названием “бешенка” (по литературным источникам) // Поволж. экол. журн. Т. 3. С. 277–284.
  10. Картавцев Ю.Ф. 2008. Молекулярная эволюция и популяционная генетика. Владивосток: Изд-во ДГУ, 562 с.
  11. Картавцев Ю.Ф., Редин А.Д. 2019. Оценки генетической интрогрессии, ретикуляции генных деревьев, дивергенции таксонов и состоятельности ДНК-штрихкодирования по молекулярным маркерам генов // Успехи соврем. биологии. Т. 139. № 1. С. 3–24. https://doi.org/10.1134/S004213241901006X
  12. Кукуев Е.И., Орлов А.М. 2018. Новый подвид финты – балтийская финта Alosa fallax balticus (Clupeidae) // Биология внутр. вод. Т. 4. С. 28–37. https://doi.org/10.1134/S0320965218040113
  13. Малкин Е.М., Андрианова С.Б. 2008. Биология и особенности формирования численности большеглазого пузанка Alosa saposchnikowii // Вопр. ихтиологии. Т. 48. № 4. С. 485–493.
  14. Орлова С.Ю., Орлов А.М., Байталюк А.А. и др. 2018. Разнообразие гена CO1 митохондриальной ДНК у представителей рода Antimora (Moridae, Gadiformes, Teleostei) // Докл. РАН. Т. 482. № 6. С. 722–727. https://doi.org/10.31857/S086956520002949-6
  15. Пятикопова О.В. 2018. Покатная миграция личинок и молоди сельди-черноспинки в незарегулированной части реки Волги (2016–2017 гг.) // Вестн. НГАУ. № 2. С. 72–80.
  16. Световидов А.Н. 1952. Фауна СССР. Рыбы. Сельдевые (Clupeidae). Т. 2. Вып. 1. М.; Л.: Наука, 331 с.
  17. Слынько Ю.В., Карабанов Д.П., Столбунова В.В. 2010а. Генетический анализ внутривидовой структуры черноморско-каспийской тюльки Clupeonella cultriventris (Nordmann, 1840) (Actinopterygii: Clupeidae) // Докл. РАН. Т. 433. № 2. С. 283–285.
  18. Слынько Ю.В., Дгебуадзе Ю.Ю., Новицкий Р.А., Христов О.А. 2010б. Инвазии чужеродных рыб в бассейнах крупнейших рек Понто-Каспийского бассейна: состав, векторы, инвазионные пути и темпы // Рос. журн. биол. инвазий. Т. 3. № 4. С. 74–89.
  19. Сулейманов С.Ш. 2017. Популяционно-генетический анализ бражниковских сельдей Alosa braschnikowi (Borodin, 1904) Каспийского моря // Adv. Biol. Earth Sci. V. 2. № 1. P. 103–111.
  20. Торопова Н.В., Мехдиев Э.Т., Лебедев И.А. 2019. Актуальные проблемы потребления продовольствия: потребление фальсифицированной и контрафактной продукции // Экономика: вчера, сегодня, завтра. Т. 9. № 10А. С. 630–638. https://doi.org/10.34670/AR.2020.91.10.071
  21. Шнеер В.С. 2009. ДНК-штрихкодирование видов животных и растений – способ их молекулярной идентификации и изучения биоразнообразия // Журн. общ. биологии. Т. 70. № 4. С. 296–315.
  22. Alexandrino P., Faria R., Linhares D. et al. 2006. Interspecific differentiation and intraspecific substructure in two closely related clupeids with extensive hybridization, Alosa alosa and Alosa fallax // J. Fish Biol. V. 69. № sb. P. 242–259. https://doi.org/10.1111/j.1095-8649.2006.01289.x
  23. Antognazza C.M., Sabatino S.J., Britton R.J. et al. 2022. Hybridization and genetic population structure of Alosa population in the United Kingdom // Ibid. V. 101. № 2. P. 408–413. https://doi.org/10.1111/jfb.14917
  24. Astolfi L., Dupanloup I., Rossi R. et al. 2005. Mitochondrial variability of sand smelt Atherina boyeri populations from north Mediterranean coastal lagoons // Mar. Ecol. Prog. Ser. V. 297. P. 233–243. https://doi.org/10.3354/meps297233
  25. Bani A., Khataminejad S., Vaziri H.R., Haseli M. 2019. The taxonomy of Alosa caspia (Clupeidae: Alosinae), using molecular and morphometric specifications, in the South Caspian Sea // Eur. Zool. J. V. 86. № 1. P. 156–172. https://doi.org/10.1080/24750263.2018.1559366
  26. Boisneau P., Mennesson‐Boisneau C., Guyomard R. 1992. Electrophoretic identity between allis shad, Alosa alosa (L.), and twaite shad, A. fallax (Lacepede) // J. Fish Biol. V. 40. № 5. P. 731–738. https://doi.org/10.1111/j.1095-8649.1992.tb02620.x
  27. Borodin N.A. 1927. Changes of environment as cause of the origin of varieties or subspecies // Am. Nat. V. 61. № 674. P. 266–271. https://doi.org/10.1086/280149
  28. Boudinar A.S., Chaoui L., Quignard J.P. et al. 2016. Otolith shape analysis and mitochondrial DNA markers distinguish three sand smelt species in the Atherina boyeri species complex in western Mediterranean // Estuar. Coast. Shelf Sci. V. 182. Pt. A. P. 202–210. https://doi.org/10.1016/j.ecss.2016.09.019
  29. Bowen B.R., Kreiser B.R., Mickle P.F. et al. 2008. Phylogenetic relationships among North American Alosa species (Clupeidae) // J. Fish Biol. V. 72. № 5. P. 1188–1201. https://doi.org/10.1111/j.1095-8649.2007.01785.x
  30. Chernova N.V., Voskoboinikova O.S., Kudryavtseva O.Y. et al. 2019. Taxonomic status of the Okhotsk lumpsucker Eumicrotremus ochotonensis (Cyclopteridae, Cottoidei) with redescription of E. derjugini // J. Ichthyol. V. 59. № 3. P. 289–306. https://doi.org/10.1134/S0032945219030032
  31. Chiesa S., Lucentini L., Piccinini A. et al. 2014. First molecular characterization of twaite shad Alosa fallax (Lacepede, 1803) from Italian populations based on Cytochrome b gene sequencing // Ital. J. Freshw. Ichthyol. V. 1. № 1. P. 9–18.
  32. Coad B.W. 2017. Review of the herrings of Iran (Family Clupeidae) // Int. J. Aquat. Biol. V. 5. № 3. P. 128–192. https://doi.org/10.22034/ijab.v5i3.282
  33. Dayrat B. 2005. Towards integrative taxonomy // Biol. J. Linn. Soc. V. 85. № 3. P. 407–417. https://doi.org/10.1111/j.1095-8312.2005.00503.x
  34. Dobrovolov I., Ivanova P., Georgiev Z. et al. 2012. Allozyme variation and genetic identification of shad species (Pisces: Clupeidae, genus Alosa) along Bulgarian Black Sea coast // Acta Zool. Bulg. V. 64. № 2. P. 175–183.
  35. Drummond A.J., Ashton B., Buxton S. et al. 2011. Geneious v5.4 (http://www.geneious.com. Version 06/2023).
  36. Dyldin Y.V., Orlov A.M., Hanel L. et al. 2022. Ichthyofauna of the fresh and brackish waters of Russia and adjacent areas: annotated list with taxonomic comments. 1. Families Petromyzontidae–Pristigasteridae // J. Ichthyol. V. 62. № 3. P. 385–414. https://doi.org/10.1134/S0032945222030031
  37. Esmaeili H.R., Coad B.W., Mehraban H.R. et al. 2014. An updated checklist of fishes of the Caspian Sea basin of Iran with a note on their zoogeography // Iran. J. Ichthyol. V. 1. № 3. P. 152–184. https://doi.org/10.22034/iji.v1i3.18
  38. Faria R., Wallner B., Weiss S., Alexandrino P. 2004. Isolation and characterization of eight dinucleotide microsatellite loci from two closely related clupeid species (Alosa alosa and A. fallax) // Mol. Ecol. Notes. V. 4. № 4. P. 586–588. https://doi.org/10.1111/j.1471-8286.2004.00745.x
  39. Faria R., Weiss S., Alexandrino P. 2006. A molecular phylogenetic perspective on the evolutionary history of Alosa spp. (Clupeidae) // Mol. Phylogenet. Evol. V. 40. № 1. P. 298–304. https://doi.org/10.1016/j.ympev.2006.02.008
  40. Faria R., Pinheiro A., Gabaldón T. et al. 2011. Molecular tools for species discrimination and detection of hybridization between two closely related Clupeid fishes Alosa alosa and A. fallax // J. Appl. Ichthyol. V. 27. № s3. P. 16–20. https://doi.org/10.1111/j.1439-0426.2011.01846.x
  41. Faria R., Weiss S., Alexandrino P. 2012. Comparative phylogeography and demographic history of European shads (Alosa alosa and A. fallax) inferred from mitochondrial DNA // BMC Evol. Biol. V. 12. Article 194. https://doi.org/10.1186/1471-2148-12-194
  42. Fricke R., Eschmeyer W.N., Fong J.D. (eds.). 2023. Eschmeyer's catalog of fishes: Genera/Species by Family/Subfamily (http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp. Version 06/2023).
  43. Froese R., Pauly D. (eds.). 2023. FishBase. World Wide Web electronic publication (www.fishbase.org. Version 06/2023).
  44. Gaudant J. 1991. Paleontology and history of clupeoid fishes // The freshwater fishes of Europe. Wiesbaden: Aula Verlag. P. 32–44.
  45. Giantsis I.A., Kechagia S., Apostolidis A.P. 2015. Evaluating the genetic status of the IUCN vulnerable endemic Macedonian shad (Alosa macedonica, Vinciguerra, 1921) from Lake Volvi // J. Appl. Ichthyol. V. 31. № 1. P. 184–187. https://doi.org/10.1111/jai.12494
  46. Hubert N., Hanner R., Holm E. et al. 2008. Identifying Canadian freshwater fishes through DNA barcodes // PLоS One. V. 3. № 6. Article e2490. https://doi.org/10.1371/journal.pone.0002490
  47. Jafari O., Shabany A., Miandare H.K. 2014. A study of genetic population of Alosa braschnicowi (Borodin, 1904) in Sari and Mahmodabad coasts in the Caspian Sea, using microsatellite loci // Int. J. Aquat. Biol. V. 2. № 1. P. 20–26. https://doi.org/10.22034/ijab.v2i1.19
  48. Jafari O., Fernandes J.M.O., Hedayati A et al. 2019. Microsatellite analysis of five populations of Alosa braschnikowi (Borodin, 1904) across the southern coast of the Caspian Sea // Front. Genet. V. 10. Article 760. https://doi.org/10.3389/fgene.2019.00760
  49. Jolly M.T., Maitland P.S., Genner M.J. 2011. Genetic monitoring of two decades of hybridization between allis shad (Alosa alosa) and twaite shad (Alosa fallax) // Conserv. Genet. V. 12. № 4. P. 1087–1100. https://doi.org/10.1007/s10592-011-0211-3
  50. Julian S.E., Bartron M.L. 2007. Microsatellite DNA markers for American shad (Alosa sapidissima) and cross‐species amplification within the family Clupeidae // Mol. Ecol. Notes. V. 7. № 5. P. 805–807. https://doi.org/10.1111/j.1471-8286.2007.01710.x
  51. Klossa-Kilia E., Prassa M., Papasotiropoulos et al. 2002. Mitochondrial DNA diversity in Atherina boyeri populations as determined by RFLP analysis of three mtDNA segments // Heredity. V. 89. № 5. P. 363–370. https://doi.org/10.1038/sj.hdy.6800144
  52. Laloei F., Fazli H., Nayerani M. et al. 2005. Genetic variation of Clupeonidae (Clupeonella cultriventris, C. engrauliformis and C. grimmi) in southern part of Caspian Sea as revealed by RFLP Analysis. Tehran: Fish. Res. Inst. Iran, 58 p.
  53. Laloei F., Eimanifar A., Rezvani S. 2009. Genetic variation of Clupeonella engrauliformis populations inferred from RFLP analysis of mitochondrial DNA D-loop region on the Southern coast of the Caspian Sea, Iran // Asian Fish. Sci. V. 22. № 3. P. 929–941. https://doi.org/10.33997/j.afs.2009.22.3.006
  54. Lavoué S., Miya M., Saitoh K. et al. 2007. Phylogenetic relationships among anchovies, sardines, herrings and their relatives (Clupeiformes), inferred from whole mitogenome sequences // Mol. Phylogenet. Evol. V. 43. № 3. P. 1096–1105. https://doi.org/10.1016/j.ympev.2006.09.018
  55. Lavoué S., Konstantinidis P., Chen W.-J. 2014 Progress in Clupeiform systematics // Biology and ecology of sardines and anchovies. Boca Raton: CRC Press. P. 3–42. https://doi.org/10.1201/b16682-6
  56. Leigh J.W., Bryant D. 2015. Popart: full‐feature software for haplotype network construction // Methods. Ecol. Evol. V. 6. № 9. 1110–1116. https://doi.org/10.1111/2041-210X.12410
  57. Li C., Ortí G. 2007. Molecular phylogeny of Clupeiformes (Actinopterygii) inferred from nuclear and mitochondrial DNA sequences // Mol. Phylogen. Evol. V. 44. № 1. P. 386–398. https://doi.org/10.1016/j.ympev.2006.10.030
  58. Maroso F., Hillen J.E.J., Pardo B.G. et al. 2018. Performance and precision of double digestion RAD (ddRAD) genotyping in large multiplexed datasets of marine fish species // Mar. Genom. V. 39. P. 64–72. https://doi.org/10.1016/j.margen.2018.02.002
  59. McBride M.C., Willis T.V., Bradford R.G., Bentzen P. 2014. Genetic diversity and structure of two hybridizing anadromous fishes (Alosa pseudoharengus, Alosa aestivalis) across the northern portion of their ranges // Conserv. Genet. V. 15. № 6. P. 1281–1298. https://doi.org/10.1007/s10592-014-0617-9
  60. Mezhzherin S.V., Fedorenko L.V., Verlatyi D.B. 2009. Differentiation and allozyme variability of shads genus Alosa (Clupeiformes, Alosiinae) from Azov-Black Sea basin // Cytol. Genet. V. 43. № 2. P. 118–122. https://doi.org/10.3103/S0095452709020078
  61. Mickle P.F., Franks J.S., Kreiser B.R. et al. 2015. First molecular verification of a marine-collected specimen of Alosa alabamae (Teleostei: Clupeidae) // Southeast. Nat. V. 14. № 3. P. 596–601. https://doi.org/10.1656/058.014.0315
  62. Milana V., Sola L., Congiu L., Rossi A.R. 2008. Mitochondrial DNA in Atherina (Teleostei, Atheriniformes): differential distribution of an intergenic spacer in lagoon and marine forms of Atherina boyeri // J. Fish Biol. V. 73. № 5. P. 1216–1227. https://doi.org/10.1111/j.1095-8649.2008.01994.x
  63. Milana V., Franchini P., Sola L. et al. 2012. Genetic structure in lagoons: the effects of habitat discontinuity and low dispersal ability on populations of Atherina boyeri // Mar. Biol. V. 159. № 2. P. 399–411. https://doi.org/10.1007/s00227-011-1817-1
  64. Nedoluzhko A., Orlova S.Yu., Kurnosov D.S. et al. 2022. Genomic signatures of freshwater adaptation in Pacific herring (Clupea pallasii) // Genes. V. 13. № 10. Article 1856. https://doi.org/10.3390/genes13101856
  65. Nelson J.S., Grande T., Wilson M.V.H. 2016. Fishes of the World. Hoboken: John Wiley and Sons, 752 p. https://doi.org/10.1002/9781119174844
  66. Norouzi M., Nazemi A., Pourkazemi M. 2012. Population genetic study on common kilka (Clupeonella cultriventris Nordmann, 1840) in the Southwest Caspian Sea (Gilan Province, Iran) using microsatellite markers // Afr. J. Biotechnol. V. 11. № 98. P. 16405–16411.
  67. Ogburn M.B., Plough L.V., Bangley C.W. et al. 2023. Environmental DNA reveals anadromous river herring habitat use and recolonization after restoration of aquatic connectivity // Environ. DNA. V. 5. № 1. P. 25–37. https://doi.org/10.1002/edn3.348
  68. Orlova S.Y., Rastorguev S., Bagno T. et al. 2021. Genetic structure of marine and lake forms of Pacific herring Clupea pallasii // PeerJ. V. 9. Article e12444. https://doi.org/10.7717/peerj.12444
  69. Pante E., Schoelinck C., Puillandre N. 2015. From integrative taxonomy to species description: one step beyond // Syst. Biol. V. 64. № 1. P. 152–160. https://doi.org/10.1093/sysbio/syu083
  70. Plough L.V., Ogburn M.B., Fitzgerald C.L. et al. 2018. Environmental DNA analysis of river herring in Chesapeake Bay: a powerful tool for monitoring threatened keystone species // PLoS One. V. 13. № 11. Article e0205578. https://doi.org/10.1371/journal.pone.0205578
  71. Sabatino S.J., Faria R., Alexandrino P.B. 2022. Genetic structure, diversity, and connectivity in anadromous and freshwater Alosa alosa and A. fallax // Mar. Biol. V. 169. № 1. Article 2. https://doi.org/10.1007/s00227-021-03970-4
  72. Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees // Mol. Biol. Evol. V. 4. № 4. P. 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  73. Schlick-Steiner B.C., Steiner F.M., Seifert B. et al. 2010. Integrative taxonomy: a multisource approach to exploring biodiversity // Annu. Rev. Entomol. V. 55. № 1. P. 421–438. https://doi.org/10.1146/annurev-ento-112408-085432
  74. Silva W.A., Costa M.C.R., Valente V. et al. 2001. PCR template preparation for capillary DNA sequencing // BioTechniques. V. 30. № 3. P. 537–542. https://doi.org/10.2144/01303st05
  75. Sotelo G., Andree K.B., López M.A. et al. 2014. The puzzling demographic history and genetic differentiation of the twaite shad (Alosa fallax) in the Ebro River // Conserv. Genet. V. 15. № 5. P. 1037–1052. https://doi.org/10.1007/s10592-014-0597-9
  76. Taillebois L., Sabatino S., Manicki A. et al. 2020. Variable outcomes of hybridization between declining Alosa alosa and Alosa fallax // Evol. Appl. V. 13. № 4. P. 636–651. https://doi.org/10.1111/eva.12889
  77. Taverne L. 2004. Les poissons crétacés de Nardò. 18. Pugliaclupea nolardi gen. et sp. nov. (Teleostei, Clupeiformes, Clupeidae) // Boll. Mus. Civ. Stor. Nat. Veronа. V. 28. P. 17–28.
  78. Turan C., Erguden D., Turan F. 2010. Phylogenetic relationship among the Black Sea Alosa species from mtDNA ND5/6 sequences // Rapp. Comm. Int. Mer Médit. V. 39. P. 687.
  79. Turan C., Ergüden D., Gürlek M. et al. 2015. Molecular systematic analysis of shad species (Alosa spp.) from Turkish marine waters using mtDNA genes // Turk. J. Fish. Aquat. Sci. V. 15. № 1. P. 149–155. http://doi.org/10.4194/1303-2712-v15_1_16
  80. Vernygora O.V., Davis C.S., Murray A.M., Sperling F.A.H. 2018. Delimitation of Alosa species (Teleostei: Clupeiformes) from the Sea of Azov: integrating morphological and molecular approaches // J. Fish Biol. V. 93. № 6. P. 1216–1228. https://doi.org/10.1111/jfb.13847
  81. Wang J., Yu Z., Wang X. et al. 2017. The next-generation sequencing reveals the complete mitochondrial genome of Alosa sapidissima (Perciformes: Clupeidae) with phylogenetic consideration // Mitochondrial DNA B: Resour. V. 2. № 1. P. 304–306. https://doi.org/10.1080/23802359.2017.1331322
  82. Whitehead P.J.P. 1985. Clupeoid fishes of the world. An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, anchovies and wolf herrings. Pt. 1. Chirocentridae, Clupeidae and Pristigasteridae // FAO Fish. Synop. № 125. V. 7. 303 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. A network of haplotypes based on the polymorphism of the COI gene in the studied samples of Celeriaceae (Clupeoidea): H1–H5 are common haplotypes in species of the genus Alosa; the number of nucleotide substitutions is indicated in the lines connecting the haplotypes (if not specified, this number is 1). Here and in Fig. 2: For the characteristics of the samples, see Table 1.

Download (367KB)
3. Fig. 2. Phylogenetic tree of the studied celeriaceae (Clupeoidea) with bootstrap support, built on the basis of nucleotide sequences of the COI gene: the nodes indicate the value of support, %; after the name of the sample, the serial number of the sample is given.

Download (362KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».