Influence of Hypothyroidism on the Variability of Carotenoid Coloration in Amatitlania nigrofasciata Females (Cichlidae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study of the effect of thyroid hormones on the development of the pigment pattern, including the expression of sexual dichromatism, contributes to our understanding of the role of endocrine signaling in the evolution of cichlid fishes, one of the most diverse groups of teleosts. This work shows the effect of reduced thyroid hormone signaling on the development of reversed sexual dichromatism in Amatitlania nigrofasciata, a Neotropical cichlid in which females, unlike males, have carotenoid coloration. In hypothyroid fishes, there was a slowdown in the rate of metamorphic transformations of the pigment pattern and an increase in phenotypic variability. The adult pattern based on carotenoids began to develop in females only after the completion of treatment of thiourea, which suppresses the synthesis of endogenous thyroid hormones. The data obtained indicate a potentially important role of thyroid hormone-mediated developmental plasticity in the diversification of carotenoid coloration in Neotropical cichlids.

About the authors

D. V. Prazdnikov

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia

Author for correspondence.
Email: pdvfish3409@rambler.ru
Россия, Москва

References

  1. Праздников Д.В. 2020. Влияние тиреоидных гормонов на развитие асимметричного пигментного рисунка у костистых рыб: экспериментальные данные на примере Amatitlania nigrofasciata (Cichlidae) и Poecilia wingei (Poeciliidae) // Изв. РАН. Сер. биол. № 2. С. 205–212. https://doi.org/10.31857/S000233292002006X
  2. Праздников Д.В., Шкиль Ф.Н. 2019. Роль гетерохроний в эволюции пигментного рисунка американских цихлид (Teleostei: Cichlidae: Cichlasomatinae): экспериментальный подход // Там же. № 1. С. 62–71. https://doi.org/10.1134/S0002332919010107
  3. Anderson C., Wong S.C., Fuller A. et al. 2015. Carotenoid-based coloration is associated with predation risk, competition, and breeding status in female convict cichlids (Amatitlania siquia) under field conditions // Environ. Biol. Fish. V. 98. № 4. P. 1005–1013. https://doi.org/10.1007/s10641-014-0333-9
  4. Anderson C., Jones R., Moscicki M. et al. 2016. Seeing orange: breeding convict cichlids exhibit heightened aggression against more colorful intruders // Behav. Ecol. Sociobiol. V. 70. № 5. P. 647–657. https://doi.org/10.1007/s00265-016-2085-3
  5. Beeching S.C., Gross S.H., Bretz H.S., Hariatis E. 1998. Sexual dichromatism in convict cichlids: the ethological significance of female ventral coloration // Anim. Behav. V. 56. № 4. P. 1021–1026. https://doi.org/10.1006/anbe.1998.0868
  6. Bertolesi G.E., McFarlane S. 2021. Melanin-concentrating hormone like and somatolactin. A teleost-specific hypothalamic-hypophyseal axis system linking physiological and morphological pigmentation // Pigment Cell Melanoma Res. V. 34. № 3. P. 564–574. https://doi.org/10.1111/pcmr.12924
  7. Blanton M.L., Specker J.L. 2007. The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction // Crit. Rev. Toxicol. V. 37. № 1–2. P. 97–115. https://doi.org/10.1080/10408440601123529
  8. Brown A.C., McGraw K.J., Clotfelter E.D. 2013. Dietary carotenoids increase yellow nonpigment coloration of female convict cichlids (Amantitlania nigrofasciata) // Physiol. Biochem. Zool. V. 86. № 3. P. 312–322. https://doi.org/10.1086/670734
  9. Campinho M.A. 2019. Teleost metamorphosis: the role of thyroid hormone // Front. Endocrinol. V. 10. Article 383. https://doi.org/10.3389/fendo.2019.00383
  10. Deal C.K., Volkoff H. 2020. The role of the thyroid axis in fish // Ibid. V. 11. Article 596585. https://doi.org/10.3389/fendo.2020.596585
  11. Earley R.L., Anderson C.T., Moscicki M.K. et al. 2020. Carotenoid availability and tradeoffs in female convict cichlids, a reverse sexually-dichromatic fish // Environ. Biol. Fish. V. 103. № 12. P. 1541–1552. https://doi.org/10.1007/s10641-020-01036-w
  12. Eskova A., Frohnhöfer H.G., Nüsslein-Volhard C., Irion U. 2020. Galanin signaling in the brain regulates color pattern formation in zebrafish // Curr. Biol. V. 30. № 2. P. 298–303.e3. https://doi.org/10.1016/j.cub.2019.11.033
  13. Hendrick L.A., Carter G.A., Hilbrands E.H. et al. 2019. Bar, stripe and spot development in sand-dwelling cichlids from Lake Malawi // EvoDevo. V. 10. № 1. Article 18. https://doi.org/10.1186/s13227-019-0132-7
  14. Karagic N., Härer A., Meyer A., Torres-Dowdall J. 2022. Thyroid hormone tinkering elicits integrated phenotypic changes potentially explaining rapid adaptation of color vision in cichlid fish // Evolution. V. 76. № 4. P. 837–845. https://doi.org/10.1111/evo.14455
  15. Kitano J., Lema S.C., Luckenbach J.A. et al. 2010. Adaptive divergence in the thyroid hormone signaling pathway in the stickleback radiation // Curr. Biol. V. 20. № 23. P. 2124–2130. https://doi.org/10.1016/j.cub.2010.10.050
  16. Lema S.C. 2020. Hormones, developmental plasticity, and adaptive evolution: endocrine flexibility as a catalyst for ‘plasticity-first’ phenotypic divergence // Mol. Cell. Endocrinol. V. 502. Article 110678. https://doi.org/10.1016/j.mce.2019.110678
  17. Liang Y., Gerwin J., Meyer A., Kratochwil C.F. 2020. Developmental and cellular basis of vertical bar color patterns in the East African cichlid fish Haplochromis latifasciatus // Front. Cell Dev. Biol. V. 8. Article 62. https://doi.org/10.3389/fcell.2020.00062
  18. Maan M.E., Sefc K.M. 2013. Colour variation in cichlid fish: developmental mechanisms, selective pressures and evolutionary consequences // Semin. Cell Dev. Biol. V. 24. № 6–7. P. 516–528. https://doi.org/10.1016/j.semcdb.2013.05.003
  19. McMenamin S.K., Bain E.J., McCann A.E. et al. 2014. Thyroid hormone–dependent adult pigment cell lineage and pattern in zebrafish // Science. V. 345. № 6202. P. 1358–1361. https://doi.org/10.1126/science.1256251
  20. Parichy D.M. 2021. Evolution of pigment cells and patterns: recent insights from teleost fishes // Curr. Opin. Genet. Dev. V. 69. P. 88–96. https://doi.org/10.1016/j.gde.2021.02.006
  21. Parichy D.M., Liang Y. 2021. Evolution of pigment pattern formation in teleosts // Pigments, pigment cells and pigment patterns. Singapore: Springer. P. 309–342. https://doi.org/10.1007/978-981-16-1490-3_10
  22. Patterson L.B., Parichy D.M. 2019. Zebrafish pigment pattern formation: insights into the development and evolution of adult form // Annu. Rev. Genet. V. 53. P. 505–530. https://doi.org/10.1146/annurev-genet-112618-043741
  23. Prazdnikov D.V. 2021. Role of thyroid hormones in color diversity of male guppies: experimental data on Endler’s guppy (Poecilia wingei) // Environ. Biol. Fish. V. 104. № 6. P. 675–688. https://doi.org/10.1007/s10641-021-01102-x
  24. Prazdnikov D.V. 2022. Thyroid hormone signaling in the evolution of carotenoid coloration in Neotropical cichlids with reversed sexual dichromatism // Ibid. V. 105. №. 11. P. 1659–1672. https://doi.org/10.1007/s10641-022-01364-z
  25. Prazdnikov D.V., Shkil F.N. 2019. Experimental evidence of the role of heterochrony in evolution of the Mesoamerican cichlids pigment patterns // Evol. Dev. V. 21. № 1. P. 3–15. https://doi.org/10.1111/ede.12272
  26. Říčan O., Musilová Z., Muška M., Novák J. 2005. Development of coloration patterns in Neotropical cichlids (Teleostei: Cichlidae: Cichlasomatinae) // Folia Zool. V. 54. Monogr. 1. 46 p.
  27. Říčan O., Piálek L., Dragová K., Novák J. 2016. Diversity and evolution of the Middle American cichlid fishes (Teleostei: Cichlidae) with revised classification // Vertebr. Zool. V. 66. № 1. P. 1–102. https://doi.org/10.3897/vz.66.e31534
  28. Robart A.R., Sinervo B. 2018. Parental response to intruder females altered by ornamentation and mate quality in a biparental fish // Behav. Ecol. V. 29. № 3. P. 701–710. https://doi.org/10.1093/beheco/ary028
  29. Roberts R.B., Moore E.C., Kocher T.D. 2017. An allelic series at pax7a is associated with colour polymorphism diversity in Lake Malawi cichlid fish // Mol. Ecol. V. 26. № 10. P. 2625–2639. https://doi.org/10.1111/mec.13975
  30. Ronco F., Matschiner M., Böhne A. et al. 2021. Drivers and dynamics of a massive adaptive radiation in cichlid fishes // Nature. V. 589. № 7840. P. 76–81. https://doi.org/10.1038/s41586-020-2930-4
  31. Salis P., Lorin T., Laudet V., Frédérich B. 2019. Magic traits in magic fish: understanding color pattern evolution using reef fish // Trends Genet. V. 35. № 4. P. 265–278. https://doi.org/10.1016/j.tig.2019.01.006
  32. Salzburger W. 2009. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes // Mol. Ecol. V. 18. № 2. P. 169–185. https://doi.org/10.1111/j.1365-294X.2008.03981.x
  33. Saunders L.M., Mishra A.K., Aman A.J. et al. 2019. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages // eLife. V. 8. Article e45181. https://doi.org/10.7554/eLife.45181
  34. Schindelin J., Arganda-Carreras I., Frise E. et al. 2012. Fiji: an open-source platform for biological-image analysis // Nat. Methods. V. 9. № 7. P. 676–682. https://doi.org/10.1038/nmeth.2019
  35. Sefc K.M., Brown A.C., Clotfelter E.D. 2014. Carotenoid-based coloration in cichlid fishes // Comp. Biochem. Physiol. Pt. A. Mol. Integr. Physiol. V. 173. P. 42–51. https://doi.org/10.1016/j.cbpa.2014.03.006
  36. Smirnov S.V., Kapitanova D.V., Borisov V.B. et al. 2012. Lake Tana large barbs diversity: developmental and hormonal bases // J. Ichthyol. V. 52. № 11. P. 861–880. https://doi.org/10.1134/S0032945212110082
  37. Tobler M. 2007. Reversed sexual dimorphism and courtship by females in the Topaz cichlid, Archocentrus myrnae (Cichlidae, Teleostei), from Costa Rica // Southwest. Nat. V. 52. № 3. P. 371–377. https://doi.org/10.1894/0038-4909(2007)52[371:RSDACB]2.0.CO;2
  38. Vancamp P., Houbrechts A.M., Darras V.M. 2019. Insights from zebrafish deficiency models to understand the impact of local thyroid hormone regulator action on early development // Gen. Comp. Endocrinol. V. 279. P. 45–52. https://doi.org/10.1016/j.ygcen.2018.09.011

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (936KB)
3.

Download (1MB)
4.

Download (2KB)
5.

Download (2KB)
6.

Download (2KB)
7.

Download (133KB)

Copyright (c) 2023 Д.В. Праздников

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies