Experimental modeling of congenital epidermolysis bullosa — a tool for studying the pathogenesis and gene therapy targets of the disease
- Authors: Karamova A.E.1, Girko E.V.1, Aulova K.M.1, Plahova X.I.1
-
Affiliations:
- State Research Center of Dermatovenereology and Cosmetology
- Issue: Vol 101, No 4 (2025)
- Pages: 27-39
- Section: REVIEWS
- URL: https://journals.rcsi.science/0042-4609/article/view/323785
- DOI: https://doi.org/10.25208/vdv16916
- EDN: https://elibrary.ru/ydlayv
- ID: 323785
Cite item
Full Text
Abstract
Epidermolysis bullosa (EB) is a phenotypically and genetically heterogeneous group of hereditary dermatoses characterized by the formation of blisters on the skin and/or mucous membranes with minimal mechanical exposure. The study of the pathogenesis and development of therapeutic strategies for EB present significant challenges. In this regard, experimental animal models of EB, especially using laboratory mice, are important in modern science. Genetically modified lines reproducing key mutations in the corresponding genes (Krt5, Krt14, Plec, Lama3, Lamb3, Lamc2, Col7a1, etc.) successfully mimic phenotypic manifestations characteristic of human forms of EB and allow us to study the stages of the pathological process development, as well as to study the molecular basis of the disease and initiate the development of new effective methods of treatment. The advent of genome editing using CRISPR-Cas9, which allows targeted mutations in genes of interest, has simplified the disease modeling process. Further improvement of models is necessary for effective translation of experimental data into clinical practice.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Arfenya E. Karamova
State Research Center of Dermatovenereology and Cosmetology
Email: karamova@cnikvi.ru
ORCID iD: 0000-0003-3805-8489
SPIN-code: 3604-6491
MD, Cand. Sci. (Med.), Assistant Professor
Russian Federation, MoscowEkaterina V. Girko
State Research Center of Dermatovenereology and Cosmetology
Email: katrin_45_34@mail.ru
ORCID iD: 0000-0001-7723-8701
SPIN-code: 9506-0978
Junior Research Associate
Russian Federation, MoscowKseniya M. Aulova
State Research Center of Dermatovenereology and Cosmetology
Author for correspondence.
Email: aulovaksenia@mail.ru
ORCID iD: 0000-0002-2924-3036
SPIN-code: 8310-7019
Junior Research Associate
Russian Federation, MoscowXenia I. Plahova
State Research Center of Dermatovenereology and Cosmetology
Email: plahova_xenia@mail.ru
ORCID iD: 0000-0003-4169-4128
SPIN-code: 7634-5521
MD, Dr. Sci. (Med.), Assistant Professor
Russian Federation, MoscowReferences
- Natsuga K, Shinkuma S, Hsu CK, Fujita Y, Ishiko A, Tamai K, et al. Current topics in Epidermolysis bullosa: pathophysiology and therapeutic challenges. J Dermatol Sci. 2021;104(3):164–176. doi: 10.1016/j.jdermsci.2021.11.004
- Hou PC, Wang HT, Abhee S, Tu WT, McGrath JA, Hsu CK. Investigational treatments for epidermolysis bullosa. Am J Clin Dermatol. 2021;22(6):801–817. doi: 10.1007/s40257-021-00626-3
- Bolling MC, Lemmink HH, Jansen GH, Jonkman MF. Mutations in KRT5 and KRT14 cause epidermolysis bullosa simplex in 75% of the patients. Br J Dermatol. 2011;164(3):637–644. doi: 10.1111/j.1365-2133.2010.10146.x
- Коталевская Ю.Ю., Степанов В.А. Молекулярно-генетические основы буллезного эпидермолиза. Вавиловский журнал генетики и селекции. 2023;27(1):18–27. [Kotalevskaya YuYu, Stepanov VA. Molecular genetic basis of epidermolysis bullosa. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2023;27(1):18–27. (In Russ.)] doi: 10.18699/VJGB-23-04
- Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature. 2017;551(7680):327–332. doi: 10.1038/nature24487
- Mariath LM, Santin JT, Schuler-Faccini L, Kiszewski AE. Inherited epidermolysis bullosa: update on the clinical and genetic aspects. An Bras Dermatol. 2020;95(5):551–569. doi: 10.1016/j.abd.2020.05.001
- Stefanescu BI, Radaschin DS, Mitrea G, Anghel L, Beznea A, Constantin GB, et al. Epidermolysis Bullosa-A Kindler Syndrome Case Report and Short Literature Review. Clin Pract. 2023;13(4):873–880. doi: 10.3390/clinpract13040079
- Кубанов А.А., Карамова А.Э., Чикин В.В., Богданова Е.В., Мончаковская Е.С. Эпидемиология и состояние оказания медицинской помощи больным врожденным буллезным эпидермолизом в Российской Федерации. Вестник РАМН. 2018;73(6):420–430. [Kubanov AA, Karamova AA, Chikin VV, Bogdanova EV, Monchakovskaya ES. Epidemiology and Providing of Healthcare for Patients with Inherited Epidermolysis Bullosa in the Russian Federation. Annals of the Russian Academy of Medical Sciences. 2018;73(6):420–430. (In Russ.)] doi: 10.15690/vramn980
- So JY, Fulchand S, Wong CY, Li S, Nazaroff J, Gorell ES, et al. A global, cross-sectional survey of patient-reported outcomes, disease burden, and quality of life in epidermolysis bullosa simplex. Orphanet J Rare Dis. 2022;17(1):270. doi: 10.1186/s13023-022-02433-3
- Lane EB, McLean WH. Keratins and skin disorders. J Pathol. 2004;204(4):355–366. doi: 10.1002/path.1643
- Peters B, Kirfel J, Büssow H, Vidal M, Magin TM. Complete cytolysis and neonatal lethality in keratin 5 knockout mice reveal its fundamental role in skin integrity and in epidermolysis bullosa simplex. Mol Biol Cell. 2001;12(6):1775–1789. doi: 10.1091/mbc.12.6.1775
- Lloyd C, Yu QC, Cheng J, Turksen K, Degenstein L, Hutton E, et al. The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14. J Cell Biol. 1995;129(5):1329–1344. doi: 10.1083/jcb.129.5.1329
- Vassar R, Coulombe PA, Degenstein L, Albers K, Fuchs E. Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell. 1991;64(2):365–380. doi: 10.1016/0092-8674(91)90645-f
- Cao T, Longley MA, Wang XJ, Roop DR. An inducible mouse model for epidermolysis bullosa simplex: implications for gene therapy. J Cell Biol. 2001;152(3):651–656. doi: 10.1083/jcb.152.3.651
- Lane EB, Rugg EL, Navsaria H, Leigh IM, Heagerty AH, Ishida-Yamamoto A, et al. A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature. 1992;359(6396):670–673. doi: 10.1038/356244a0
- Cole-Strauss A, Yoon K, Xiang Y, Byrne BC, Rice MC, Gryn J, et al. Correction of the mutation responsible for sickle cell anemia by an RNA–DNA oligonucleotide. Science. 1996;273(5280):1386–1389. doi: 10.1126/science.273.5280.1386
- Alexeev V, Igoucheva O, Domashenko A, Cotsarelis G, Yoon K. Localized in vivo genotypic and phenotypic correction of the albino mutation in skin by RNA–DNA oligonucleotide. Nat Biotechnol. 2000;18(1):43–47. doi: 10.1038/71901
- Bolling MC, Jongbloed JD, Boven LG, Diercks GF, Smith FJ, McLean WH, et al. Plectin mutations underlie epidermolysis bullosa simplex in 8% of patients. J Invest Dermatol. 2014;134(1):273–276. doi: 10.1038/jid.2013.277
- Andrä K, Lassmann H, Bittner R, Shorny S, Fässler R, Propst F, et al. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev. 1997;11(23):3143–3156. doi: 10.1101/gad.11.23.3143
- Ackerl R, Walko G, Fuchs P, Fischer I, Schmuth M, Wiche G. Conditional targeting of plectin in prenatal and adult mouse stratified epithelia causes keratinocyte fragility and lesional epidermal barrier defects. J Cell Sci. 2007;120(Pt 14):2435–2443. doi: 10.1242/jcs.004481
- Aumailley M. Laminins and interaction partners in the architecture of the basement membrane at the dermal-epidermal junction. Exp Dermatol. 2021;30(1):17–24. doi: 10.1111/exd.14239
- Has C, Bauer JW, Bodemer C, Bolling MC, Bruckner-Tuderman L, Diem A, et al. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol. 2020;183(4):614–627. doi: 10.1111/bjd.18921
- Uitto J, Has C, Vahidnezhad H, Youssefian L, Bruckner-Tuderman L. Molecular pathology of the basement membrane zone in heritable blistering diseases: The paradigm of epidermolysis bullosa. Matrix Biol. 2017;57–58:76–85. doi: 10.1016/j.matbio.2016.07.009
- Turcan I, Pasmooij AMG, van den Akker PC, Lemmink H, Halmos GB, Sinke RJ, et al. Heterozygosity for a novel missense mutation in the ITGB4 gene associated with autosomal dominant epidermolysis bullosa. JAMA Dermatol. 2016;152(5):558–562. doi: 10.1001/jamadermatol.2015.5236
- Ryan MC, Lee K, Miyashita Y, Carter WG. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol. 1999;145(6):1309–1323. doi: 10.1083/jcb.145.6.1309
- Meng X, Klement JF, Leperi DA, Birk DE, Sasaki T, Timpl R, et al. Targeted inactivation of murine laminin gamma2-chain gene recapitulates human junctional epidermolysis bullosa. J Invest Dermatol. 2003;121(4):720–731. doi: 10.1046/j.1523-1747.2003.12515.x
- Kuster JE, Guarnieri MH, Ault JG, Flaherty L, Swiatek PJ. IAP insertion in the murine LamB3 gene results in junctional epidermolysis bullosa. Mamm Genome. 1997;8(9):673–681. doi: 10.1007/s003359900535
- Bubier JA, Sproule TJ, Alley LM, Webb CM, Fine JD, Roopenian DC, et al. A mouse model of generalized non-Herlitz junctional epidermolysis bullosa. J Invest Dermatol. 2010;130(7):1819–1828. doi: 10.1038/jid.2010.46
- Capt A, Spirito F, Guaguere E, Spadafora A, Ortonne JP, Meneguzzi G. Inherited junctional epidermolysis bullosa in the German Pointer: establishment of a large animal model. J Invest Dermatol. 2005;124(3):530–535. doi: 10.1111/j.0022-202X.2004.23584.x
- Capt A, Spirito F, Guyon R, André C, Ortonne JP, Meneguzzi G. Cloning of laminin gamma2 cDNA and chromosome mapping of the genes for the dog adhesion ligand laminin 5. Biochem Biophys Res Commun. 2003;312(4):1256–1265. doi: 10.1016/j.bbrc.2003.11.058
- Spirito F, Charlesworth A, Linder K, Ortonne JP, Baird J, Meneguzzi G. Animal models for skin blistering conditions: absence of laminin 5 causes hereditary junctional mechanobullous disease in the Belgian horse. J Invest Dermatol. 2002;119(3):684–691. doi: 10.1046/j.1523-1747.2002.01852.x
- Lucky AW, Gorell E. Epidermolysis bullosa with pyloric atresia. In: GeneReviews. Adam MP, Feldman J, Mirzaa GM, et al. (eds) University of Washington, Seattle, Seattle (WA); 1993.
- Pereda JM de, Lillo MP, Sonnenberg A. Structural basis of the interaction between integrin alpha6beta4 and plectin at the hemidesmosomes. EMBO J. 2009;28(8):1180–1190. doi: 10.1038/emboj.2009.48
- Georges-Labouesse E, Messaddeq N, Yehia G, Cadalbert L, Dierich A, Le Meur M. Absence of integrin alpha 6 leads to epidermolysis bullosa and neonatal death in mice. Nat Genet. 1996;13(3):370–373. doi: 10.1038/ng0796-370
- van der Neut R, Krimpenfort P, Calafat J, Niessen CM, Sonnenberg A. Epithelial detachment due to absence of hemidesmosomes in integrin beta 4 null mice. Nat Genet. 1996;13(3):366–369. doi: 10.1038/ng0796-366
- Raymond K, Kreft M, Janssen H, Calafat J, Sonnenberg A. Keratinocytes display normal proliferation, survival and differentiation in conditional beta4-integrin knockout mice. J Cell Sci. 2005;118(Pt 5):1045–1060. doi: 10.1242/jcs.01689
- Has C, Spartà G, Kiritsi D, Weibel L, Moeller A, Vega-Warner V, et al. Integrin α3 mutations with kidney, lung, and skin disease. N Engl J Med. 2012;366(16):1508–1514. doi: 10.1056/NEJMoa1110813
- Kinyó Á, Kovács AL, Degrell P, Kálmán E, Nagy N, Kárpáti S, et al. Homozygous ITGA3 Missense Mutation in Adults in a Family with Syndromic Epidermolysis Bullosa (ILNEB) without Pulmonary Involvement. J Invest Dermatol. 2021;141(11):2752–2756. doi: 10.1016/j.jid.2021.03.029
- Colombo EA, Spaccini L, Volpi L, Negri G, Cittaro D, Lazarevic D, et al. Viable phenotype of ILNEB syndrome without nephrotic impairment in siblings heterozygous for unreported integrin alpha3 mutations. Orphanet J Rare Dis. 2016;11(1):136. doi: 10.1186/s13023-016-0514-z
- DiPersio CM, Hodivala-Dilke KM, Jaenisch R, Kreidberg JA, Hynes RO. alpha3beta1 Integrin is required for normal development of the epidermal basement membrane. J Cell Biol. 1997;137(3):729–742. doi: 10.1083/jcb.137.3.729
- Vaz SO, Dâmaso C, Liu L, Ozoemena L, Mota-Vieira L. Severe phenotype of junctional epidermolysis bullosa generalised intermediate type caused by homozygous COL17A1:c.505C>T (p.Arg169*) mutation. Eur J Dermatol. 2018;28(3):412–413. doi: 10.1684/ejd.2018.3279
- Van den Bergh F, Giudice GJ. BP180 (type XVII collagen) and its role in cutaneous biology and disease. Adv Dermatol. 2003;19:37–71.
- Franzke CW, Tasanen K, Schumann H, Bruckner-Tuderman L. Collagenous transmembrane proteins: collagen XVII as a prototype. Matrix Biol. 2003;22(4):299–309. doi: 10.1016/s0945-053x(03)00051-9
- Koster J, Borradori L, Sonnenberg A. Hemidesmosomes: molecular organization and their importance for cell adhesion and disease. Handb Exp Pharmacol. 2004;165:243–280. doi: 10.1007/978-3-540-68170-0-9
- Katoh Y, Sato A, Takahashi N, Nishioka Y, Shimizu-Endo N, Ito T, et al. Junctional Epidermolysis Bullosa in Sprague Dawley Rats Caused by a Frameshift Mutation of Col17a1 Gene. Lab Invest. 2024;104(10):102132. doi: 10.1016/j.labinv.2024.102132
- Sproule TJ, Bubier JA, Grandi FC, Sun VZ, Philip VM, McPhee CG, et al. Molecular identification of collagen 17a1 as a major genetic modifier of laminin gamma 2 mutation-induced junctional epidermolysis bullosa in mice. PLoS Genet. 2014;10(2):e1004068. doi: 10.1371/journal.pgen.1004068
- Parente MG, Chung LC, Ryynänen J, Woodley DT, Wynn KC, Bauer EA, et al. Human type VII collagen: cDNA cloning and chromosomal mapping of the gene. Proc Natl Acad Sci U S A. 1991;88(16):6931–6935. doi: 10.1073/pnas.88.16.6931
- Christiano AM, Greenspan DS, Lee S, Uitto J. Cloning of human type VII collagen. Complete primary sequence of the alpha 1(VII) chain and identification of intragenic polymorphisms. J Biol Chem. 1994;269(32):20256–20262.
- Кубанов АА, Чикин ВВ, Карамова АЭ. Дистрофический врожденный буллезный эпидермолиз: клинико-генетические корреляции. Вестник дерматологии и венерологии. 2023;99(4):60–83. [Kubanov AA, Chikin VV, Karamova AE. Dystrophic epidermolysis bullosa: genotype-phenotype correlations. Vestnik Dermatologii i Venerologii. 2023;99(4):60–83. (In Russ.)] doi: 10.25208/vdv13281
- Fine JD, Bruckner-Tuderman L, Eady RA, Bauer EA, Bauer JW, Has C, et al. Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification. J Am Acad Dermatol. 2014;70(6):1103–1126. doi: 10.1016/j.jaad.2014.01.903
- Bruckner-Tuderman L. Dystrophic epidermolysis bullosa: pathogenesis and clinical features. Dermatol Clin. 2010;28(1):107–114. doi: 10.1016/j.det.2009.10.020
- Intong LR, Murrell DF. Inherited epidermolysis bullosa: new diagnostic criteria and classification. Clin Dermatol. 2012;30(1):70–77. doi: 10.1016/j.clindermatol.2011.03.012
- Fine JD, Mellerio JE. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part I. Epithelial associated tissues. J Am Acad Dermatol. 2009;61(3):367–384. doi: 10.1016/j.jaad.2009.03.052
- Fine JD, Mellerio JE. Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part II. Other organs. J Am Acad Dermatol. 2009;61(3):387–402. doi: 10.1016/j.jaad.2009.03.053
- Heinonen S, Männikkö M, Klement JF, Whitaker-Menezes D, Murphy GF, Uitto J. Targeted inactivation of the type VII collagen gene (Col7a1) in mice results in severe blistering phenotype: a model for recessive dystrophic epidermolysis bullosa. J Cell Sci. 1999;112(Pt 21):3641–3648. doi: 10.1242/jcs.112.21.3641
- Fritsch A, Loeckermann S, Kern JS, Braun A, Bösl MR, Bley TA, et al. A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy. J Clin Invest. 2008;118(5):1669–1679. doi: 10.1172/JCI34292
- Hong SA, Kim SE, Lee AY, Hwang GH, Kim JH, Iwata H, et al. Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Mol Ther. 2022;30(8):2664–2679. doi: 10.1016/j.ymthe.2022.06.005
- Takaki S, Shimbo T, Ikegami K, Kitayama T, Yamamoto Y, Yamazaki S, et al. Generation of a recessive dystrophic epidermolysis bullosa mouse model with patient-derived compound heterozygous mutations. Lab Invest. 2022;102(6):574–580. doi: 10.1038/s41374-022-00735-5
- Alipour F, Ahmadraji M, Yektadoost E, Mohammadi P, Baharvand H, Basiri M. CRISPR/Cas9-Mediated Generation of COL7A1-Deficient Keratinocyte Model of Recessive Dystrophic Epidermolysis Bullosa. Cell J. 2023;25(10):665–673. doi: 10.22074/cellj.2023.1989321.1225
- García M, Bonafont J, Martínez-Palacios J, Xu R, Turchiano G, Svensson S, et al. Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors. Mol Ther Methods Clin Dev. 2022;27:96–108. doi: 10.1016/j.omtm.2022.09.005
- Webber BR, O’Connor KT, McElmurry RT, Durgin EN, Eide CR, Lees CJ, et al. Rapid generation of Col7a1–/– mouse model of recessive dystrophic epidermolysis bullosa and partial rescue via immunosuppressive dermal mesenchymal stem cells. Lab Invest. 2017;97(10):1218–1224. doi: 10.1038/labinvest.2017.85
- Stone W, Strege C, Miller W, Geurts AM, Grzybowski M, Riddle M, et al. Creation and characterization of novel rat model for recessive dystrophic epidermolysis bullosa: Frameshift mutation of the Col7a1 gene leads to severe blistered phenotype. PLoS One. 2024;19(5):e0302991. doi: 10.1371/journal.pone.0302991
- Chung HJ, Uitto J. Type VII collagen: the anchoring fibril protein at fault in dystrophic epidermolysis bullosa. Dermatol Clin. 2010;28(1):93– 105. doi: 10.1016/j.det.2009.10.011
- Nyström A, Buttgereit J, Bader M, Shmidt T, Ozcelik C, Hausser I, et al. Rat model for dominant dystrophic epidermolysis bullosa: glycine substitution reduces collagen VII stability and shows gene-dosage effect. PLoS One. 2013;8(5):e64243. doi: 10.1371/journal.pone.0064243
- Nishida A, Kataoka N, Takeshima Y, Yagi M, Awano H, Ota M, et al. Chemical treatment enhances skipping of a mutated exon in the dystrophin gene. Nat Commun. 2011;2:308. doi: 10.1038/ncomms1306
- Goto M, Sawamura D, Nishie W, Sakai K, McMillan JR, Akiyama M, et al. Targeted skipping of a single exon harboring a premature termination codon mutation: implications and potential for gene correction therapy for selective dystrophic epidermolysis bullosa patients. J Invest Dermatol. 2006;126(12):2614–2620. doi: 10.1038/sj.jid.5700435
- Smith BRC, Nyström A, Nowell CJ, Hausser I, Gretzmeier C, Robertson SJ, et al. Mouse models for dominant dystrophic epidermolysis bullosa carrying common human point mutations recapitulate the human disease. Dis Model Mech. 2021;14(6):dmm048082. doi: 10.1242/dmm.048082
- Youssefian L, Vahidnezhad H, Uitto J. Kindler syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al. (eds) Gene Reviews. Seattle, Seattle (WA): University of Washington; 1993.
- Krishna CV, Parmar NV, Has C. Kindler syndrome with severe mucosal involvement in childhood. Clin Exp Dermatol. 2014;39(3):340–343. doi: 10.1111/ced.12293
- Krämer S, Hillebrecht AL, Wang Y, Badea MA, Barrios JI, Danescu S, et al. Orofacial Anomalies in Kindler Epidermolysis Bullosa. JAMA Dermatol. 2024;160(5):544–549. doi: 10.1001/jamadermatol.2024.0065
- El Hachem M, Diociaiuti A, Proto V, Fortugno P, Zambruno G, Castiglia D, et al. Kindler syndrome with severe mucosal involvement in a large Palestinian pedigree. Eur J Dermatol. 2015;25(1):14–19. doi: 10.1684/ejd.2014.2457
- Wiebe CB, Penagos H, Luong N, Slots J, Epstein E Jr, Siegel D, et al. Clinical and microbiologic study of periodontitis associated with Kindler syndrome. J Periodontol. 2003;74(1):25–31. doi: 10.1902/jop.2003.74.1.25
- Zhang X, Luo S, Wu J, Zhang L, Wang WH, Degan S, et al. KIND1 Loss Sensitizes Keratinocytes to UV-Induced Inflammatory Response and DNA Damage. J Invest Dermatol. 2017;137(2):475–483. doi: 10.1016/j.jid.2016.09.023
- Rognoni E, Widmaier M, Jakobson M, Ruppert R, Ussar S, Katsougkri D, et al. Kindlin-1 controls Wnt and TGF-β availability to regulate cutaneous stem cell proliferation. Nat Med. 2014;20(4):350–359. doi: 10.1038/nm.3490
Supplementary files
