Application of biomedical cell products in the treatment of congenital epidermolysis bullosa

Cover Page

Cite item

Full Text

Abstract

Congenital epidermolysis bullosa is a phenotypically and genetically heterogeneous group of genodermatoses, which are characterized by decreasing of skin’s structural protein production up to complete absence or violation of the structure as a result of mutation. Congenital epidermolysis bullosa clinically manifests by the development of blisters on the skin and mucous membranes after mechanical injury. The presence of long-term erosive and ulcerative defects in patients with congenital epidermolysis bullosa reduces the quality of patients’ life and also leads to malignancy of the lesions, as a result of constant stimulation of regenerative processes. Currently, in the treatment of patients with congenital epidermolysis bullosa symptomatic therapy, including prevention of secondary infections, use of pain medication and atraumatic non-adherent wound dressings and correction of complications, is widely used. Nevertheless there are a lot of publications describing the use of skin substitutes, three-dimensional tissue-engineered structures based on auto- and allogeneic cells that promote rapid epithelization of wounds in patients with congenital epidermolysis bullosa. Tissue-engineered skin substitutes can be categorised based on their cellular composition: epidermal substitutes consist of an epidermal layer of stratified keratinocyte sheets with or without an underlying acellular dermal layer containing scaffolding; dermal substitutes contain fibroblasts embedded within a scaffolded dermal matrix; composite substitutes are composed of an epidermal layer of stratified keratinocyte sheets and an underlying scaffolded dermal layer containing fibroblasts. The most prospective and at the same time the least studied direction of congenital epidermolysis bullosa treatment is the use of a combined skin equivalent created on the basis of keratinocytes and fibroblasts, which mixes the advantages of epidermal and dermal grafts.

About the authors

Arfenya E. Karamova

State Research Center of Dermatovenereology and Cosmetology

Email: karamova@cnikvi.ru
ORCID iD: 0000-0003-3805-8489
SPIN-code: 3604-6491

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Moscow

Kseniya M. Aulova

State Research Center of Dermatovenereology and Cosmetology

Author for correspondence.
Email: aulovaksenia@mail.ru
ORCID iD: 0000-0002-2924-3036
SPIN-code: 8310-7019
Russian Federation, Moscow

Vadim V. Chikin

State Research Center of Dermatovenereology and Cosmetology

Email: chikin@cnikvi.ru
ORCID iD: 0000-0002-9688-2727
SPIN-code: 3385-4723

MD, Dr. Sci. (Med.)

Russian Federation, Moscow

Аlexey A. Kubanov

State Research Center of Dermatovenereology and Cosmetology

Email: alex@cnikvi.ru
ORCID iD: 0000-0002-7625-0503
SPIN-code: 8771-4990

MD, Dr. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences

Russian Federation, Moscow

References

  1. Natsuga K, Shinkuma S, Hsu CK, Fujita Y, Ishiko A, Tamai K, et al. Current topics in Epidermolysis bullosa: Pathophysiology and therapeutic challenges. J Dermatol Sci. 2021;104(3):164–176. doi: 10.1016/j.jdermsci.2021.11.004
  2. Pope E, Lara-Corrales I, Mellerio J, Martinez A, Schultz G, Burrell R, et al. A consensus approach to wound care in epidermolysis bullosa. J Am Acad Dermatol. 2012;67(5):904–917. doi: 10.1016/j.jaad.2012.01.016
  3. Кубанов А.А., Карамова А.Э., Альбанова В.И., Мончаковская Е.С. Терапия больных врожденным буллезным эпидермолизом с применением современных неадгезивных перевязочных средств. Вестник дерматологии и венерологии. 2019;95(1):30–40. [Kubanov AA, Karamova AE, Albanova VI, Monchakovskaya ES. Therapy of patients with congenital epidermolysis bullosa using modern non-adherent wound dressings. Vestnik Dermatologii i Venerologii. 2019;95(1):30–40. (In Russ.)] doi: 10.25208/0042-4609-2019-95-1-30-40
  4. Кубанов А.А., Чикин В.В., Карамова А.Э., Мончаковская Е.С. Наружная терапия больных врожденным буллезным эпидермолизом. Вестник дерматологии и венерологии. 2021;97(6):6–19. [Kubanov АA, Chikin VV, Karamova AE, Monchakovskaya ES. Topical treatment of inherited epidermolysis bullosa. Vestnik Dermatologii i Venerologii. 2021;97(6):6–19. (In Russ.)] doi: https://doi.org/10.25208/vdv1282
  5. Denyer J, Pillay E, Clapham J. Best practice guidelines. Skin and wound care in epidermolysis bullosa. An International Consensus. Wounds International; 2017.
  6. Bardhan A, Bruckner-Tuderman L, Chapple ILC, Fine JD, Harper N, Has C, et al. Epidermolysis bullosa. Nat Rev Dis Primers. 2020;6(1):78. doi: 10.1038/s41572-020-0210-0
  7. Lloyd C, Besse J, Boyce S. Controlled-rate freezing to regulate the structure of collagen-glycosaminoglycan scaffolds in engineered skin substitutes. J Biomed Mater Res B Appl Biomater. 2015;103(4):832–840. doi: 10.1002/jbm.b.33253
  8. Mahjour SB, Fu X, Yang X, Fong J, Sefat F, Wang H. Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute full-thickness wound repair. Burns. 2015;41(8):1764–1774. doi: 10.1016/j.burns.2015.06.011
  9. Wang Y, Xu R, Luo G, Lei Q, Shu Q, Yao Z, et al. Biomimetic fibroblast-loaded artificial dermis with “sandwich” structure and designed gradient pore sizes promotes wound healing by favoring granulation tissue formation and wound re-epithelialization. Acta Biomater. 2016;30:246–257. doi: 10.1016/j.actbio.2015.11.035
  10. du Rand A, Hunt JMT, Feisst V, Sheppard HM. Epidermolysis Bullosa: A Review of the Tissue-Engineered Skin Substitutes Used to Treat Wounds. Mol Diagn Ther. 2022;26(6):627–643. doi: 10.1007/s40291-022-00613-2
  11. McGrath JA, Schofield OM, Ishida-Yamamoto A, O’Grady A, Mayou BJ, Navsaria H, et al. Cultured keratinocyte allografts and wound healing in severe recessive dystrophic epidermolysis bullosa. J Am Acad Dermatol. 1993;29(3):407–419. doi: 10.1016/0190-9622(93)70203-6
  12. Gostynski A, Deviaene FC, Pasmooij AM, Pas HH, Jonkman MF. Adhesive stripping to remove epidermis in junctional epidermolysis bullosa for revertant cell therapy. Br J Dermatol. 2009;161(2):444–447. doi: 10.1111/j.1365-2133.2009.09118.x
  13. Shinkuma S, Sawamura D, Fujita Y, Kawasaki H, Nakamura H, Inoie M, et al. Long-term follow-up of cultured epidermal autograft in a patient with recessive dystrophic epidermolysis bullosa. Acta Derm Venereol. 2014;94(1):98–99. doi: 10.2340/00015555-1592
  14. Matsumura W, Fujita Y, Shinkuma S, Suzuki S, Yokoshiki S, Goto H, et al. Cultured Epidermal Autografts from Clinically Revertant Skin as a Potential Wound Treatment for Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol. 2019;139(10):2115–2124.e11. doi: 10.1016/j.jid.2019.03.1155
  15. Hirsch T, Rothoeft T, Teig N, Bauer JW, Pellegrini G, De Rosa L, et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature. 2017;551(7680):327–332. doi: 10.1038/nature24487
  16. Bauer JW, Koller J, Murauer EM, De Rosa L, Enzo E, Carulli S, et al. Closure of a Large Chronic Wound through Transplantation of Gene-Corrected Epidermal Stem Cells. J Invest Dermatol. 2017;137(3):778–781. doi: 10.1016/j.jid.2016.10.038
  17. Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med. 2006;12(12):1397–1402. doi: 10.1038/nm1504
  18. Sibbald RG, Zuker R, Coutts P, Coelho S, Williamson D, Queen D. Using a dermal skin substitute in the treatment of chronic wounds secondary to recessive dystrophic epidermolysis bullosa: a case series. Ostomy Wound Manage. 2005;51(11):22–46.
  19. Shin KC, Park BY, Kim HK, Kim WS, Bae TH. The use of cultured allogenic keratinocyte grafting in a patient with epidermolysis bullosa simplex. Ann Dermatol. 2011;23(Suppl 3):S393–S397. doi: 10.5021/ad.2011.23.S3.S393
  20. Falabella AF, Schachner LA, Valencia IC, Eaglstein WH. The use of tissue-engineered skin (Apligraf) to treat a newborn with epidermolysis bullosa. Arch Dermatol. 1999;135(10):1219–1222. doi: 10.1001/archderm.135.10.1219
  21. Falabella AF, Valencia IC, Eaglstein WH, Schachner LA. Tissue-engineered skin (Apligraf) in the healing of patients with epidermolysis bullosa wounds. Arch Dermatol. 2000;136(10):1225–1230. doi: 10.1001/archderm.136.10.1225
  22. Fivenson DP, Scherschun L, Choucair M, Kukuruga D, Young J, Shwayder T. Graftskin therapy in epidermolysis bullosa. J Am Acad Dermatol. 2003;48(6):886–892. doi: 10.1067/mjd.2003.502
  23. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331–343. doi: 10.1016/s0092-8674(75)80001-8
  24. Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A. 1979;76(11):5665–5668. doi: 10.1073/pnas.76.11.5665
  25. Atiyeh BS, Costagliola M. Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns. 2007;33(4):405–413. doi: 10.1016/j.burns.2006.11.002
  26. Spiekstra SW, Breetveld M, Rustemeyer T, Scheper RJ, Gibbs S. Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes. Wound Repair Regen. 2007;15(5):708–717. doi: 10.1111/j.1524-475X.2007.00280.x
  27. Collin B, Balderson D, Papini R, Marsden J, Moss C. Cultured autologous keratinocyte grafting of chronic erosions in three patients with epidermolysis bullosa. Clin Exp Dermatol. 2006;31(5):718–719. doi: 10.1111/j.1365-2230.2006.02200.x
  28. Shinkuma S, Sawamura D, Fujita Y, Kawasaki H, Nakamura H, Inoie M, et al. Long-term follow-up of cultured epidermal autograft in a patient with recessive dystrophic epidermolysis bullosa. Acta Derm Venereol. 2014;94(1):98–99. doi: 10.2340/00015555-1592
  29. Wollina U, Konrad H, Fischer T. Recessive epidermolysis bullosa dystrophicans (Hallopeau–Siemens) — improvement of wound healing by autologous epidermal grafts on an esterified hyaluronic acid membrane. J Dermatol. 2001;28(4):217–220. doi: 10.1111/j.1346-8138.2001.tb00120.x
  30. Siprashvili Z, Nguyen NT, Gorell ES, Loutit K, Khuu P, Furukawa LK, et al. Safety and Wound Outcomes Following Genetically Corrected Autologous Epidermal Grafts in Patients with Recessive Dystrophic Epidermolysis Bullosa. JAMA. 2016;316(17):1808–1817. doi: 10.1001/jama.2016.15588
  31. Carter DM, Lin AN, Varghese MC, Caldwell D, Pratt LA, Eisinger M. Treatment of junctional epidermolysis bullosa with epidermal autografts. J Am Acad Dermatol. 1987;17(2 Pt 1):246–250. doi: 10.1016/s0190-9622(87)70199-6
  32. Przekora A. A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue In Vitro? Cells. 2020;9(7):1622. doi: 10.3390/cells9071622
  33. Kaur A, Midha S, Giri S, Mohanty S. Functional Skin Grafts: Where Biomaterials Meet Stem Cells. Stem Cells Int. 2019;2019:1286054. doi: 10.1155/2019/1286054
  34. Jonkman MF, Pasmooij AM. Revertant mosaicism — patchwork in the skin. N Engl J Med. 2009;360(16):1680–1682. doi: 10.1056/NEJMc0809896
  35. De Rosa L, Enzo E, Zardi G, Bodemer C, Magnoni C, Schneider H, et al. Hologene 5: A Phase II/III Clinical Trial of Combined Cell and Gene Therapy of Junctional Epidermolysis Bullosa. Front Genet. 2021;12:705019. doi: 10.3389/fgene.2021.705019
  36. Kueckelhaus M, Rothoeft T, De Rosa L, Yeni B, Ohmann T, Maier C, et al. Transgenic Epidermal Cultures for Junctional Epidermolysis Bullosa — 5-Year Outcomes. N Engl J Med. 2021;385(24):2264–2270. doi: 10.1056/NEJMoa2108544
  37. Hill JC, Grimwood RE, Parsons DS. Treatment of chronic erosions of junctional epidermolysis bullosa with human epidermal allografts. J Dermatol Surg Oncol. 1992;18(5):396–400. doi: 10.1111/j.1524-4725.1992.tb03692.x
  38. Kubo K, Kuroyanagi Y. Development of a cultured dermal substitute composed of a spongy matrix of hyaluronic acid and atelo-collagen combined with fibroblasts: fundamental evaluation. J Biomater Sci Polym Ed. 2003;14(7):625–641. doi: 10.1163/156856203322274897
  39. Natsuga K, Sawamura D, Goto M, Homma E, Goto-Ohguchi Y, Aoyagi S, et al. Response of intractable skin ulcers in recessive dystrophic epidermolysis bullosa patients to an allogeneic cultured dermal substitute. Acta Derm Venereol. 2010;90(2):165–169. doi: 10.2340/00015555-0776
  40. Hasegawa T, Suga Y, Mizoguchi M, Ikeda S, Ogawa H, Kubo K, et al. Clinical trial of allogeneic cultured dermal substitute for the treatment of intractable skin ulcers in 3 patients with recessive dystrophic epidermolysis bullosa. J Am Acad Dermatol. 2004;50(5):803–804. doi: 10.1016/j.jaad.2003.08.013
  41. Moravvej H, Abdollahimajd F, Naseh MH, Piravar Z, Abolhasani E, Mozafari N, et al. Cultured allogeneic fibroblast injection vs. fibroblasts cultured on amniotic membrane scaffold for dystrophic epidermolysis bullosa treatment. Br J Dermatol. 2018;179(1):72–79. doi: 10.1111/bjd.16338
  42. Eisenberg M, Llewelyn D. Surgical management of hands in children with recessive dystrophic epidermolysis bullosa: use of allogeneic composite cultured skin grafts. Br J Plast Surg. 1998;51(8):608–613. doi: 10.1054/bjps.1998.9997
  43. Betsi EE, Kalbermatten DF, Raffoul W. Surgical management of dystrophic epidermolysis bullosa with autologous composite cultured skin grafts. J Hand Surg Eur Vol. 2009;34(3):398–399. doi: 10.1177/1753193408095879

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic overview of the tissue-engineered skin substitutes assessed for epidermolysis bullosa. To generate tissue-engineered skin substitutes, human skin cells (fibroblasts and/or keratinocytes) are isolated from skin biopsies, expanded under different cell culture conditions, and used in conjunction with or without some form of scaffolding material. Tissue-engineered skin substitutes can be categorised based on their cellular composition: epidermal substitutes consist of an epidermal layer of stratified keratinocyte sheets with or without an underlying acellular dermal layer containing scaffolding; dermal substitutes contain fibroblasts embedded within a scaffolded dermal matrix; composite substitutes are composed of an epidermal layer of stratified keratinocyte sheets and an underlying scaffolded dermal layer containing fibroblasts Note. This figure was translated into Russian and adapted from the source [10]. The article is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License.

Download (379KB)

Copyright (c) 2024 Karamova A.E., Aulova K.M., Chikin V.V., Kubanov А.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».