Junctional epidermolysis bullosa: genotype-phenotype correlations

Cover Page

Cite item

Full Text

Abstract

Junctional epidermolysis bullosa most commonly results from mutations in the LAMA3, LAMB3, LAMC2, COL17A1, ITGA6 and ITGB4 genes. Junctional epidermolysis bullosa is characterized by clinical heterogeneity. To date, scientific findings allow to evaluate correlations between the severity of clinical manifestations and genetic defects underlying in the development of the disease. A systematic literature search was performed using PubMed and RSCI, and keywords including “junctional epidermolysis bullosa”, “laminin 332”, “collagen XVII”, “α6β4 integrin”. The review includes description of clinical findings of junctional epidermolysis bullosa, mutation location and types, its’ impact on protein production and functions. To evaluate the impact of gene mutation on protein functions, this review explores the structure and functions of lamina lucida components, including laminin 332, collagen XVII and α6β4 integrin, which are frequently associated with the development of junctional epidermolysis bullosa. The correlation between severe types of junctional epidermolysis bullosa and mutations resulting in premature stop codon generation and complete absence of protein expression has been described. Although, genotype-phenotype correlations should be analyzed carefully due to mechanisms which enable to improve protein expression.

About the authors

Alexey A. Kubanov

State Research Center of Dermatovenereology and Cosmetology

Email: alex@cnikvi.ru
ORCID iD: 0000-0002-7625-0503
SPIN-code: 8771-4990

MD, Dr. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences

Russian Federation, Korolenko str., 3, bldg 6, 107076, Moscow

Vadim V. Chikin

State Research Center of Dermatovenereology and Cosmetology

Author for correspondence.
Email: chikin@cnikvi.ru
ORCID iD: 0000-0002-9688-2727
SPIN-code: 3385-4723

MD, Dr. Sci. (Med.)

Russian Federation, Korolenko str., 3, bldg 6, 107076, Moscow

Arfenya E. Karamova

State Research Center of Dermatovenereology and Cosmetology

Email: karamova@cnikvi.ru
ORCID iD: 0000-0003-3805-8489
SPIN-code: 3604-6491

MD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Korolenko str., 3, bldg 6, 107076, Moscow

Ekaterina S. Monchakovskaya

State Research Center of Dermatovenereology and Cosmetology

Email: monchakovskaya@cnikvi.ru
ORCID iD: 0000-0002-6402-0962
SPIN-code: 9859-1912

Junior Research Associate

Russian Federation, Korolenko str., 3, bldg 6, 107076, Moscow

References

  1. Has C, Bauer JW, Bodemer C, Bolling MC, Bruckner-Tuderman L, Diem A, et al. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol. 2020;183(4):614–627. doi: 10.1111/bjd.18921
  2. Fine JD, Bruckner-Tuderman L, Eady RAJ, Bauer EA, Bauer JW, Has C, et al. Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification. J Am Acad Dermatol. 2014;70(6):1103–1126. doi: 10.1016/j.jaad.2014.01.903
  3. Mariath LM, Santin JT, Schuler-Faccini L, Kiszewski AE. Inherited epidermolysis bullosa: update on the clinical and genetic aspects. An Bras Dermatol. 2020;95(5):551–569. doi: 10.1016/j.abd.2020.05.001
  4. Has C, Kern JS. Collagen XVII. Dermatol Clin. 2010;28(1):61–66. doi: 10.1016/j.det.2009.10.007
  5. Kiritsi D, Has C, Bruckner-Tuderman L. Laminin 332 in junctional epidermolysis bullosa. Cell Adh Migr. 2013;7(1):135–141. doi: 10.4161/cam.22418
  6. Lee M, Chen Q, Wang H, Zhang J, Lin Z, Yang Y. ITGB4-associated junctional epidermolysis bullosa without pylori atresia but profound genito-urinary involvement. Acta Derm Venereol. 2015;95(1):112–113. doi: 10.2340/00015555-1888
  7. Laimer M, Lanschuetzer CM, Diem A, Bauer JW. Herlitz junctional epidermolysis bullosa. Dermatol Clin. 2010;28(1):55–60. doi: 10.1016/j.det.2009.10.006
  8. Ansai O, Shinkuma S, Kabata Y, Katsumi T, Hagiwara R, Tomii K, et al. Amino acid charge and epidermolysis bullosa simplex severity: genotype-phenotype correlations. J Eur Acad Dermatol Venereol. 2020;34(2):e87–e90. doi: 10.1111/jdv.15990
  9. Natale MI, Manzur GB, Lusso SB, Cella E, Giovo ME, Andrada R, et al. Analysis of COL7A1 pathogenic variants in a large cohort of dystrophic epidermolysis bullosa patients from Argentina reveals a new genotype-phenotype correlation. Am J Med Genet A. 2022;188(11):3153–3161. doi: 10.1002/ajmg.a.62957
  10. Uitto J, Has C, Vahidnezhad H, Youssefian L, Bruckner-Tuderman L. Molecular pathology of the basement membrane zone in heritable blistering diseases: The paradigm of epidermolysis bullosa. Matrix Biol. 2017;57–58:76–85. doi: 10.1016/j.matbio.2016.07.009
  11. Turcan I, Pasmooij AMG, Akker PC van den, Lemmink H, Halmos GB, Sinke RJ, et al. Heterozygosity for a novel missense mutation in the ITGB4 gene associated with autosomal dominant epidermolysis bullosa. JAMA Dermatol. 2016;152(5):558–562. doi: 10.1001/jamadermatol.2015.5236
  12. Sugawara K, Tsuruta D, Ishii M, Jones JCR, Kobayashi H. Laminin-332 and -511 in skin. Exp Dermatol. 2008;17(6):473–480. doi: 10.1111/j.1600-0625.2008.00721.x
  13. Has C, Nyström A, Saeidian AH, Bruckner-Tuderman L, Uitto J. Epidermolysis bullosa: Molecular pathology of connective tissue components in the cutaneous basement membrane zone. Matrix Biol. 2018;71–72:313–329. doi: 10.1016/j.matbio.2018.04.001
  14. Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, et al. A simplified laminin nomenclature. Matrix Biol. 2005;24(5):326–332. doi: 10.1016/j.matbio.2005.05.006
  15. Domogatskaya A, Rodin S, Tryggvason K. Functional diversity of laminins. Annu Rev Cell Dev Biol. 2012;28:523–553. doi: 10.1146/annurev-cellbio-101011-155750
  16. Aumailley M. The laminin family. Cell Adh Migr. 2013;7(1):48–55. doi: 10.4161/cam.22826
  17. Macdonald PR, Lustig A, Steinmetz MO, Kammerer RA. Laminin chain assembly is regulated by specific coiled-coil interactions. J Struct Biol. 2010;170(2):398–405. doi: 10.1016/j.jsb.2010.02.004
  18. Matsui C, Wang CK, Nelson CF, Bauer EA, Hoeffler WK. The assembly of laminin-5 subunits. J Biol Chem. 1995;270(40):23496–23503. doi: 10.1074/jbc.270.40.23496
  19. Nomizu M, Utani A, Beck K, Otaka A, Roller PP, Yamada Y. Mechanism of laminin chain assembly into a triple-stranded coiled-coil structure. Biochemistry. 1996;35(9):2885–2893. doi: 10.1021/bi951555n
  20. Antonsson P, Kammerer RA, Schulthess T, Hänisch G, Engel J. Stabilization of the alpha-helical coiled-coil domain in laminin by C-terminal disulfide bonds. J Mol Biol. 1995;250(1):74–79. doi: 10.1006/jmbi.1995.0359
  21. Utani A, Nomizu M, Timpl R, Roller PP, Yamada Y. Laminin chain assembly. Specific sequences at the C terminus of the long arm are required for the formation of specific double- and triple-stranded coiled-coil structures. J Biol Chem. 1994;269(29):19167–19175.
  22. Aumailley M, Smyth N. The role of laminins in basement membrane function. J Anat. 1998;193(1):1–21. doi: 10.1046/j.1469-7580.1998.19310001.x
  23. Shaw L, Sugden CJ, Hamill KJ. Laminin polymerization and inherited disease: lessons from genetics. Front Genet. 2021;12:707087. doi: 10.3389/fgene.2021.707087
  24. Zimmerman T, Blanco FJ. The coiled-coil structure potential of the laminin LCC domain is very fragmented and does not differentiate between natural and non-detected isoforms. J Biomol Struct Dyn. 2007;24(4):413–420. doi: 10.1080/07391102.2007.10507129
  25. Beck K, Dixon TW, Engel J, Parry DA. Ionic interactions in the coiled-coil domain of laminin determine the specificity of chain assembly. J Mol Biol. 1993;231(2):311–323. doi: 10.1006/jmbi.1993.1284
  26. Schneider H, Mühle C, Pacho F. Biological function of laminin-5 and pathogenic impact of its deficiency. Eur J Cell Biol. 2007;86(11–12):701–717. doi: 10.1016/j.ejcb.2006.07.004
  27. Timpl R, Tisi D, Talts JF, Andac Z, Sasaki T, Hohenester E. Structure and function of laminin LG modules. Matrix Biol. 2000;19(4):309–317. doi: 10.1016/s0945-053x(00)00072-x
  28. Rousselle P, Beck K. Laminin 332 processing impacts cellular behavior. Cell Adh Migr. 2013;7(1):122–134. doi: 10.4161/cam.23132
  29. Tsubota Y, Yasuda C, Kariya Y, Ogawa T, Hirosaki T, Mizushima H, et al. Regulation of biological activity and matrix assembly of laminin-5 by COOH-terminal, LG4-5 domain of alpha3 chain. J Biol Chem. 2005;280(15):14370–14377. doi: 10.1074/jbc.M413051200
  30. Baudoin C, Fantin L, Meneguzzi G. Proteolytic processing of the laminin alpha3 G domain mediates assembly of hemidesmosomes but has no role on keratinocyte migration. J Invest Dermatol. 2005;125(5):883–888. doi: 10.1111/j.0022-202X.2005.23881.x
  31. Champliaud MF, Lunstrum GP, Rousselle P, Nishiyama T, Keene DR, Burgeson RE. Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment. J Cell Biol. 1996;132(6):1189–1198. doi: 10.1083/jcb.132.6.1189
  32. Van Agtmael T, Bruckner-Tuderman L. Basement membranes and human disease. Cell Tissue Res. 2010;339(1):167–188. doi: 10.1007/s00441-009-0866-y
  33. Behrens DT, Villone D, Koch M, Brunner G, Sorokin L, Robenek H, et al. The epidermal basement membrane is a composite of separate laminin- or collagen IV-containing networks connected by aggregated perlecan, but not by nidogens. J Biol Chem. 2012;287(22):18700–18709. doi: 10.1074/jbc.M111.336073
  34. Has C, Nyström A. Epidermal basement membrane in health and disease. Curr Top Membr. 2015;76:117–170. doi: 10.1016/bs.ctm.2015.05.003
  35. Rousselle P, Keene DR, Ruggiero F, Champliaud MF, Rest M, Burgeson RE. Laminin 5 binds the NC-1 domain of type VII collagen. J Cell Biol. 1997;138(3):719–728. doi: 10.1083/jcb.138.3.719
  36. Aumailley M, El Khal A, Knöss N, Tunggal L. Laminin 5 processing and its integration into the ECM. Matrix Biol. 2003;22(1):49–54. doi: 10.1016/s0945-053x(03)00013-1
  37. Chen M, Marinkovich MP, Veis A, Cai X, Rao CN, O'Toole EA, et al. Interactions of the amino-terminal noncollagenous (NC1) domain of type VII collagen with extracellular matrix components. A potential role in epidermal-dermal adherence in human skin. J Biol Chem. 1997;272(23):14516–14522. doi: 10.1074/jbc.272.23.14516
  38. Ido H, Nakamura A, Kobayashi R, Ito S, Li S, Futaki S, et al. The requirement of the glutamic acid residue at the third position from the carboxyl termini of the laminin gamma chains in integrin binding by laminins. J Biol Chem. 2007;282(15):11144–11154. doi: 10.1074/jbc.M609402200
  39. Taniguchi Y, Ido H, Sanzen N, Hayashi M, Sato-Nishiuchi R, Futaki S, et al. The C-terminal region of laminin beta chains modulates the integrin binding affinities of laminins. J Biol Chem. 2009;284(12):7820–7831. doi: 10.1074/jbc.M809332200
  40. Marinkovich MP. Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer. 2007;7(5):370–380. doi: 10.1038/nrc2089
  41. Yamada M, Sekiguchi K. Molecular Basis of Laminin-Integrin Interactions. Curr Top Membr. 2015;76:197–229. doi: 10.1016/bs.ctm.2015.07.002
  42. Ogawa T, Tsubota Y, Hashimoto J, Kariya Y, Miyazaki K. The short arm of laminin gamma2 chain of laminin-5 (laminin-332) binds syndecan-1 and regulates cellular adhesion and migration by suppressing phosphorylation of integrin beta4 chain. Mol Biol Cell. 2007;18(5):1621–1633. doi: 10.1091/mbc.e06-09-0806
  43. Van den Bergh F, Giudice GJ. BP180 (type XVII collagen) and its role in cutaneous biology and disease. Adv Dermatol. 2003;19:37–71.
  44. Franzke CW, Tasanen K, Schumann H, Bruckner-Tuderman L. Collagenous transmembrane proteins: collagen XVII as a prototype. Matrix Biol. 2003;22(4):299–309. doi: 10.1016/s0945-053x(03)00051-9
  45. Gatalica B, Pulkkinen L, Li K, Kuokkanen K, Ryynänen M, McGrath JA, et al. Cloning of the human type XVII collagen gene (COL17A1), and detection of novel mutations in generalized atrophic benign epidermolysis bullosa. Am J Hum Genet. 1997;60(2):352–365.
  46. Areida SK, Reinhardt DP, Muller PK, Fietzek PP, Kowitz J, Marinkovich MP, et al. Properties of the collagen type XVII ectodomain. Evidence for n- to c-terminal triple helix folding. J Biol Chem. 2001;276(2):1594–1601. doi: 10.1074/jbc.M008709200
  47. Van den Bergh F, Fu CL, Olague-Marchan M, Giudice GJ. The NC16A domain of collagen XVII plays a role in triple helix assembly and stability. Biochem Biophys Res Commun. 2006;350(4):1032–1037. doi: 10.1016/j.bbrc.2006.09.147
  48. Hurskainen T, Moilanen J, Sormunen R, Franzke CW, Soininen R, Loeffek S, et al. Transmembrane collagen XVII is a novel component of the glomerular filtration barrier. Cell Tissue Res. 2012;348(3):579–588. doi: 10.1007/s00441-012-1368-x
  49. Seppänen A, Suuronen T, Hofmann SC, Majamaa K, Alafuzoff I. Distribution of collagen XVII in the human brain. Brain Res. 2007;1158:50–56. doi: 10.1016/j.brainres.2007.04.073
  50. Kondo J, Kusachi S, Ninomiya Y, Yoshioka H, Oohashi T, Doi M, et al. Expression of type XVII collagen alpha 1 chain mRNA in the mouse heart. Jpn Heart J. 1998;39(2):211–220. doi: 10.1536/ihj.39.211
  51. Asaka T, Akiyama M, Domon T, Nishie W, Natsuga K, Fujita Y, et al. Type XVII collagen is a key player in tooth enamel formation. Am J Pathol. 2009;174(1):91–100. doi: 10.2353/ajpath.2009.080573
  52. Koster J, Borradori L, Sonnenberg A. Hemidesmosomes: molecular organization and their importance for cell adhesion and disease. Handb Exp Pharmacol. 2004;165:243–280. doi: 10.1007/978-3-540-68170-0_9
  53. Hopkinson SB, Jones JC. The N terminus of the transmembrane protein BP180 interacts with the N-terminal domain of BP230, thereby mediating keratin cytoskeleton anchorage to the cell surface at the site of the hemidesmosome. Mol Biol Cell. 2000;11(1):277–286. doi: 10.1091/mbc.11.1.277
  54. Koster J, Geerts D, Favre B, Borradori L, Sonnenberg A. Analysis of the interactions between BP180, BP230, plectin and the integrin alpha6beta4 important for hemidesmosome assembly. J Cell Sci. 2003;116(2):387–399. doi: 10.1242/jcs.00241
  55. Tasanen K, Tunggal L, Chometon G, Bruckner-Tuderman L, Aumailley M. Keratinocytes from patients lacking collagen XVII display a migratory phenotype. Am J Pathol. 2004;164(6):2027–2038. doi: 10.1016/S0002-9440(10)63762-5
  56. Tamura RN, Rozzo C, Starr L, Chambers J, Reichardt LF, Cooper HM, et al. Epithelial integrin alpha 6 beta 4: complete primary structure of alpha 6 and variant forms of beta 4. J Cell Biol. 1990;111(4):1593–1604. doi: 10.1083/jcb.111.4.1593
  57. Hogervorst F, Kuikman I, Borne AE von dem, Sonnenberg A. Cloning and sequence analysis of beta-4 cDNA: an integrin subunit that contains a unique 118 kd cytoplasmic domain. EMBO J. 1990;9(3):765–770. doi: 10.1002/j.1460-2075.1990.tb08171.x
  58. Pereda JM de, Lillo MP, Sonnenberg A. Structural basis of the interaction between integrin alpha6beta4 and plectin at the hemidesmosomes. EMBO J. 2009;28(8):1180–1190. doi: 10.1038/emboj.2009.48
  59. Schaapveld RQ, Borradori L, Geerts D, Leusden MR van, Kuikman I, Nievers MG, et al. Hemidesmosome formation is initiated by the beta4 integrin subunit, requires complex formation of beta4 and HD1/plectin, and involves a direct interaction between beta4 and the bullous pemphigoid antigen 180. J Cell Biol. 1998;142(1):271–284. doi: 10.1083/jcb.142.1.271
  60. Chung HJ, Uitto J. Epidermolysis bullosa with pyloric atresia. Dermatol Clin. 2010;28(1):43–54. doi: 10.1016/j.det.2009.10.005
  61. Dellambra E, Prislei S, Salvati AL, Madeddu ML, Golisano O, Siviero E, et al. Gene correction of integrin beta4-dependent pyloric atresia-junctional epidermolysis bullosa keratinocytes establishes a role for beta4 tyrosines 1422 and 1440 in hemidesmosome assembly. J Biol Chem. 2001;276(44):41336–41342. doi: 10.1074/jbc.M103139200
  62. Nievers MG, Schaapveld RQ, Oomen LC, Fontao L, Geerts D, Sonnenberg A. Ligand-independent role of the beta 4 integrin subunit in the formation of hemidesmosomes. J Cell Sci. 1998;111(12):1659–1672. doi: 10.1242/jcs.111.12.1659
  63. Niessen CM, Hulsman EH, Oomen LC, Kuikman I, Sonnenberg A. A minimal region on the integrin beta4 subunit that is critical to its localization in hemidesmosomes regulates the distribution of HD1/plectin in COS-7 cells. J Cell Sci. 1997;110(15):1705–1716. doi: 10.1242/jcs.110.15.1705
  64. Mainiero F, Pepe A, Wary KK, Spinardi L, Mohammadi M, Schlessinger J, et al. Signal transduction by the alpha 6 beta 4 integrin: distinct beta 4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. EMBO J. 1995;14(18):4470–4481. doi: 10.1002/j.1460-2075.1995.tb00126.x
  65. Hogervorst F, Kuikman I, Borne AE von dem, Sonnenberg A. Cloning and sequence analysis of beta-4 cDNA: an integrin subunit that contains a unique 118 kd cytoplasmic domain. EMBO J. 1990;9(3):765–770. doi: 10.1002/j.1460-2075.1990.tb08171.x
  66. Tuckwell DS, Humphries MJ. A structure prediction for the ligand-binding region of the integrin beta subunit: evidence for the presence of a von Willebrand factor A domain. FEBS Lett. 1997;400(3):297–303. doi: 10.1016/s0014-5793(96)01368-3
  67. Colombatti A, Bonaldo P. The superfamily of proteins with von Willebrand factor type A-like domains: one theme common to components of extracellular matrix, hemostasis, cellular adhesion, and defense mechanisms. Blood. 1991;77(11):2305–2315.
  68. Luo BH, Carman CV, Springer TA. Structural basis of integrin regulation and signaling. Annu Rev Immunol. 2007;25:619–647. doi: 10.1146/annurev.immunol.25.022106.141618
  69. Fu G, Wang W, Luo BH. Overview: structural biology of integrins. Methods Mol Biol. 2012;757:81–99. doi: 10.1007/978-1-61779-166-6_7
  70. Huang C, Springer TA. Folding of the beta-propeller domain of the integrin alphaL subunit is independent of the I domain and dependent on the beta2 subunit. Proc Natl Acad Sci U S A. 1997;94(7):3162–3167. doi: 10.1073/pnas.94.7.3162
  71. Lu C, Oxvig C, Springer TA. The structure of the beta-propeller domain and C-terminal region of the integrin alphaM subunit. Dependence on beta subunit association and prediction of domains. J Biol Chem. 1998;273(24):15138–15147. doi: 10.1074/jbc.273.24.15138
  72. Kamata T, Tieu KK, Irie A, Springer TA, Takada Y. Amino acid residues in the alpha IIb subunit that are critical for ligand binding to integrin alpha IIbbeta 3 are clustered in the beta-propeller model. J Biol Chem. 2001;276(47):44275–44283. doi: 10.1074/jbc.M107021200
  73. Masunaga T, Ogawa J, Akiyama M, Nishikawa T, Shimizu H, Ishiko A. Compound heterozygosity for novel splice site mutations of ITGA6 in lethal junctional epidermolysis bullosa with pyloric atresia. J Dermatol. 2017;44(2):160–166. doi: 10.1111/1346-8138.13575
  74. Vaz SO, Dâmaso C, Liu L, Ozoemena L, Mota-Vieira L. Severe phenotype of junctional epidermolysis bullosa generalised intermediate type caused by homozygous COL17A1:c.505C>T (p.Arg169*) mutation. Eur J Dermatol. 2018;28(3):412–413. doi: 10.1684/ejd.2018.3279
  75. Dang N, Klingberg S, Rubin AI, Edwards M, Borelli S, Relic J, et al. Differential expression of pyloric atresia in junctional epidermolysis bullosa with ITGB4 mutations suggests that pyloric atresia is due to factors other than the mutations and not predictive of a poor outcome: three novel mutations and a review of the literature. Acta Derm Venereol. 2008;88(5):438–448. doi: 10.2340/00015555-0484
  76. Schumann H, Kiritsi D, Pigors M, Hausser I, Kohlhase J, Peters J, et al. Phenotypic spectrum of epidermolysis bullosa associated with  integrin mutations. Br J Dermatol. 2013;169(1):115–124. doi: 10.1111/bjd.12317
  77. Hammersen J, Has C, Naumann-Bartsch N, Stachel D, Kiritsi D, Söder S, et al. Genotype, clinical course, and therapeutic decision making in 76 infants with severe generalized junctional epidermolysis bullosa. J Invest Dermatol. 2016;136(11):2150–2157. doi: 10.1016/j.jid.2016.06.609
  78. Pulkkinen L, Rouan F, Bruckner-Tuderman L, Wallerstein R, Garzon M, Brown T, et al. Novel ITGB4 mutations in lethal and nonlethal variants of epidermolysis bullosa with pyloric atresia: missense versus nonsense. Am J Hum Genet. 1998;63(5):1376–1387. doi: 10.1086/302116
  79. Mühle C, Jiang QJ, Charlesworth A, Bruckner-Tuderman L, Meneguzzi G, Schneider H. Novel and recurrent mutations in the laminin-5 genes causing lethal junctional epidermolysis bullosa: molecular basis and clinical course of Herlitz disease. Hum Genet. 2005;116(1-2):33–42. doi: 10.1007/s00439-004-1210-y
  80. Vidal F, Baudoin C, Miquel C, Galliano MF, Christiano AM, Uitto J, et al. Cloning of the laminin alpha 3 chain gene (LAMA3) and identification of a homozygous deletion in a patient with Herlitz junctional epidermolysis bullosa. Genomics. 1995;30(2):273–280. doi: 10.1006/geno.1995.9877
  81. Vailly J, Pulkkinen L, Miquel C, Christiano AM, Gerecke D, Burgeson RE, et al. Identification of a homozygous one-basepair deletion in exon 14 of the LAMB3 gene in a patient with Herlitz junctional epidermolysis bullosa and prenatal diagnosis in a family at risk for recurrence. J Invest Dermatol. 1995;104(4):462–466. doi: 10.1111/1523-1747.ep12605898
  82. Takizawa Y, Shimizu H, Pulkkinen L, Suzumori K, Kakinuma H, Uitto J, et al. Combination of a novel frameshift mutation (1929delCA) and a recurrent nonsense mutation (W610X) of the LAMB3 gene in a Japanese patient with Herlitz junctional epidermolysis bullosa, and their application for prenatal testing. J Invest Dermatol. 1998;111(6):1239–1241. doi: 10.1038/sj.jid.5600370
  83. Takizawa Y, Pulkkinen L, Shimizu H, Lin L, Hagiwara S, Nishikawa T, et al. Maternal uniparental meroisodisomy in the LAMB3 region of chromosome 1 results in lethal junctional epidermolysis bullosa. J Invest Dermatol. 1998;110(5):828–831. doi: 10.1046/j.1523-1747.1998.00186.x
  84. Takizawa Y, Shimizu H, Pulkkinen L, Nonaka S, Kubo T, Kado Y, et al. Novel premature termination codon mutations in the laminin gamma2-chain gene (LAMC2) in Herlitz junctional epidermolysis bullosa. J Invest Dermatol. 1998;111(6):1233–1234. doi: 10.1046/j.1523-1747.1998.00438.x
  85. Posteraro P, De Luca N, Meneguzzi G, El Hachem M, Angelo C, Gobello T, et al. Laminin-5 mutational analysis in an Italian cohort of patients with junctional epidermolysis bullosa. J Invest Dermatol. 2004;123(4):639–648. doi: 10.1111/j.0022-202X.2004.23302.x
  86. Castori M, Floriddia G, De Luca N, Pascucci M, Ghirri P, Boccaletti V, et al. Herlitz junctional epidermolysis bullosa: laminin-5 mutational profile and carrier frequency in the Italian population. Br J Dermatol. 2008;158(1):38–44. doi: 10.1111/j.1365-2133.2007.08208.x
  87. Mizushima H, Takamura H, Miyagi Y, Kikkawa Y, Yamanaka N, Yasumitsu H, et al. Identification of integrin-dependent and -independent cell adhesion domains in COOH-terminal globular region of laminin-5 alpha 3 chain. Cell Growth Differ. 1997;8(9):979–987.
  88. Nielsen PK, Gho YS, Hoffman MP, Watanabe H, Makino M, Nomizu M, et al. Identification of a major heparin and cell binding site in the LG4 module of the laminin alpha 5 chain. J Biol Chem. 2000;275(19):14517–14523. doi: 10.1074/jbc.275.19.14517
  89. Ruzzi L, Gagnoux-Palacios L, Pinola M, Belli S, Meneguzzi G, D'Alessio M, et al. A homozygous mutation in the integrin alpha6 gene in junctional epidermolysis bullosa with pyloric atresia. J Clin Invest. 1997;99(12):2826–2831. doi: 10.1172/JCI119474
  90. Aho S, Uitto J. Direct interaction between the intracellular domains of bullous pemphigoid antigen 2 (BP180) and beta 4 integrin, hemidesmosomal components of basal keratinocytes. Biochem Biophys Res Commun. 1998;243(3):694–699. doi: 10.1006/bbrc.1998.8162
  91. Spinardi L, Einheber S, Cullen T, Milner TA, Giancotti FG. A recombinant tail-less integrin beta 4 subunit disrupts hemidesmosomes but does not suppress alpha 6 beta 4-mediated cell adhesion to laminins. J Cell Biol. 1995;129(2):473–487. doi: 10.1083/jcb.129.2.473
  92. Culbertson MR. RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet. 1999;15(2):74–80. doi: 10.1016/s0168-9525(98)01658-8
  93. Urlaub G, Mitchell PJ, Ciudad CJ, Chasin LA. Nonsense mutations in the dihydrofolate reductase gene affect RNA processing. Mol Cell Biol. 1989;9(7):2868–2880. doi: 10.1128/mcb.9.7.2868-2880.1989
  94. Cui Y, Hagan KW, Zhang S, Peltz SW. Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon. Genes Dev. 1995;9(4):423–436. doi: 10.1101/gad.9.4.423
  95. McIntosh I, Hamosh A, Dietz HC. Nonsense mutations and diminished mRNA levels. Nat Genet. 1993;4(3):219. doi: 10.1038/ng0793-219
  96. Kivirikko S, McGrath JA, Baudoin C, Aberdam D, Ciatti S, Dunnill MG, et al. A homozygous nonsense mutation in the alpha 3 chain gene of laminin 5 (LAMA3) in lethal (Herlitz) junctional epidermolysis bullosa. Hum Mol Genet. 1995;4(5):959–962. doi: 10.1093/hmg/4.5.959
  97. Nakano A, Pulkkinen L, Murrell D, Rico J, Lucky AW, Garzon M, et al. Epidermolysis bullosa with congenital pyloric atresia: novel mutations in the beta 4 integrin gene (ITGB4) and genotype/phenotype correlations. Pediatr Res. 2001;49(5):618–626. doi: 10.1203/00006450-200105000-00003
  98. Pulkkinen L, Kurtz K, Xu Y, Bruckner-Tuderman L, Uitto J. Genomic organization of the integrin beta 4 gene (ITGB4): a homozygous splice-site mutation in a patient with junctional epidermolysis bullosa associated with pyloric atresia. Lab Invest. 1997;76(6): 823–833.
  99. Ellis C, Eason C, Snyder A, Siegel M, Pai GS, Ryan E, et al. Novel missense p.R252L mutation of ITGB4 compounded with known 3793+1G>A mutation associated with nonlethal epidermolysis bullosa-pyloric atresia with obstructive uropathy. JAAD Case Rep. 2021;11:63–68. doi: 10.1016/j.jdcr.2021.03.016
  100. Peters BP, Hartle RJ, Krzesicki RF, Kroll TG, Perini F, Balun JE, et al. The biosynthesis, processing, and secretion of laminin by human choriocarcinoma cells. J Biol Chem. 1985;260(27):14732–14742.
  101. Allegra M, Gagnoux-Palacios L, Gache Y, Roques S, Lestringant G, Ortonne JP, et al. Rapid decay of alpha6 integrin caused by a mis-sense mutation in the propeller domain results in severe junctional epidermolysis bullosa with pyloric atresia. J Invest Dermatol. 2003;121(6):1336–1343. doi: 10.1111/j.1523-1747.2003.12625.x
  102. Varki R, Sadowski S, Pfendner E, Uitto J. Epidermolysis bullosa. I. Molecular genetics of the junctional and hemidesmosomal variants. J Med Genet. 2006;43(8):641–652. doi: 10.1136/jmg.2005.039685
  103. Pulkkinen L, Uitto J. Heterozygosity for premature termination codon mutations in LAMB3 in siblings with non-lethal junctional epidermolysis bullosa. J Invest Dermatol. 1998;111(6):1244–1246. doi: 10.1046/j.1523-1747.1998.00399.x
  104. Gache Y, Allegra M, Bodemer C, Pisani-Spadafora A, Prost Y de, Ortonne JP, et al. Genetic bases of severe junctional epidermolysis bullosa presenting spontaneous amelioration with aging. Hum Mol Genet. 2001;10(21):2453–2461. doi: 10.1093/hmg/10.21.2453
  105. McGrath JA, Ashton GH, Mellerio JE, Salas-Alanis JC, Swensson O, McMillan JR, et al. Moderation of phenotypic severity in dystrophic and junctional forms of epidermolysis bullosa through in-frame skipping of exons containing non-sense or frameshift mutations. J Invest Dermatol. 1999;113(3):314–321. doi: 10.1046/j.1523-1747.1999.00709.x
  106. Swensson O, Christophers E. Generalized atrophic benign epidermolysis bullosa in 2 siblings complicated by multiple squamous cell carcinomas. Arch Dermatol. 1998;134(2):199–203. doi: 10.1001/archderm.134.2.199
  107. Chavanas S, Gache Y, Vailly J, Kanitakis J, Pulkkinen L, Uitto J, et al. Splicing modulation of integrin beta4 pre-mRNA carrying a branch point mutation underlies epidermolysis bullosa with pyloric atresia undergoing spontaneous amelioration with ageing. Hum Mol Genet. 1999;8(11):2097–2105. doi: 10.1093/hmg/8.11.2097
  108. McGrath JA, Pulkkinen L, Christiano AM, Leigh IM, Eady RA, Uitto J. Altered laminin 5 expression due to mutations in the gene encoding the beta 3 chain (LAMB3) in generalized atrophic benign epidermolysis bullosa. J Invest Dermatol. 1995;104(4):467–474. doi: 10.1111/1523-1747.ep12605904
  109. McGarth JA, Christiano AM, Pulkkinen L, Eady RA, Uitto J. Compound heterozygosity for nonsense ans missense mutations in the LAMB3 gene in nonlethal junctional epidermolysis bullosa. J Invest Dermatol. 1996;106(5):1157–1159. doi: 10.1111/1523-1747.ep12340210
  110. Wu Y, Li G, Zhu X. A novel homozygous point mutation in the COL17A1 gene in a Chinese family with generalized atrophic benign epidermolysis bullosa. J Dermatol Sci. 2002;28(3):181–186. doi: 10.1016/s0923-1811(01)00163-3
  111. McGrath JA, Gatalica B, Li K, Dunnill MG, McMillan JR, Christiano AM, et al. Compound heterozygosity for a dominant glycine substitution and a recessive internal duplication mutation in the type XVII collagen gene results in junctional epidermolysis bullosa and abnormal dentition. Am J Pathol. 1996;148(6):1787–1796.
  112. Castiglia D, Posteraro P, Spirito F, Pinola M, Angelo C, Puddu P, et al. Novel mutations in the LAMC2 gene in non-Herlitz junctional epidermolysis bullosa: effects on laminin-5 assembly, secretion, and deposition. J Invest Dermatol. 2001;117(3):731–739. doi: 10.1046/j.0022-202x.2001.01453.x
  113. Gagnoux-Palacios L, Allegra M, Spirito F, Pommeret O, Romero C, Ortonne JP, et al. The short arm of the laminin gamma2 chain plays a pivotal role in the incorporation of laminin 5 into the extracellular matrix and in cell adhesion. J Cell Biol. 2001;153(4):835–850. doi: 10.1083/jcb.153.4.835
  114. Leusden MR van, Pas HH, Gedde-Dahl T Jr, Sonnenberg A, Jonkman MF. Truncated typeXVII collagen expression in a patient with non-herlitz junctional epidermolysis bullosa caused by a homozygous splice-site mutation. Lab Invest. 2001;81(6):887–894. doi: 10.1038/labinvest.3780297
  115. Whittock NV, Sher C, Gold I, Libman V, Reish O. A founder COL17A1 splice site mutation leading to generalized atrophic benign epidermolysis bullosa in an extended inbred Palestinian family from Israel. Genet Med. 2003;5(6):435–439. doi: 10.1097/01.gim.0000096494.61125.d8
  116. Pulkkinen L, Marinkovich MP, Tran HT, Lin L, Herron GS, Uitto J. Compound heterozygosity for novel splice site mutations in the BPAG2/COL17A1 gene underlies generalized atrophic benign epidermolysis bullosa. J Invest Dermatol. 1999;113(6):1114–1118. doi: 10.1046/j.1523-1747.1999.00793.x
  117. Schumann H, Hammami-Hauasli N, Pulkkinen L, Mauviel A, Küster W, Lüthi U, et al. Three novel homozygous point mutations and a new polymorphism in the COL17A1 gene: relation to biological and clinical phenotypes of junctional epidermolysis bullosa. Am J Hum Genet. 1997;60(6):1344–1353. doi: 10.1086/515463
  118. Pasmooij AMG, Pas HH, Deviaene FCL, Nijenhuis M, Jonkman MF. Multiple correcting COL17A1 mutations in patients with revertant mosaicism of epidermolysis bullosa. Am J Hum Genet. 2005;77(5):727–740. doi: 10.1086/497344
  119. Jonkman MF, Scheffer H, Stulp R, Pas HH, Nijenhuis M, Heeres K, et al. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell. 1997;88(4):543–551. doi: 10.1016/s0092-8674(00)81894-2
  120. Pulkkinen L, Christiano AM, Airenne T, Haakana H, Tryggvason K, Uitto J. Mutations in the gamma 2 chain gene (LAMC2) of kalinin/laminin 5 in the junctional forms of epidermolysis bullosa. Nat Genet. 1994;6(3):293–297. doi: 10.1038/ng0394-293
  121. Inoue M, Tamai K, Shimizu H, Owaribe K, Nakama T, Hashimoto T, et al. A homozygous missense mutation in the cytoplasmic tail of beta4 integrin, G931D, that disrupts hemidesmosome assembly and underlies Non-Herlitz junctional epidermolysis bullosa without pyloric atresia? J Invest Dermatol. 2000;114(5):1061–1064. doi: 10.1046/j.1523-1747.2000.00960-3.x
  122. Yu Y, Wang Z, Mi Z, Sun L, Fu X, Yu G, et al. Epidermolysis bullosa in Chinese patients: Genetic analysis and mutation landscape in 57 pedigrees and sporadic cases. Acta Derm Venereol. 2021;101(7):adv00503. doi: 10.2340/00015555-3843
  123. Scaturro M, Posteraro P, Mastrogiacomo A, Zaccaria ML, De Luca N, Mazzanti C, et al. A missense mutation (G1506E) in the adhesion G domain of laminin-5 causes mild junctional epidermolysis bullosa. Biochem Biophys Res Commun. 2003;309(1):96–103. doi: 10.1016/s0006-291x(03)01533-x
  124. Posteraro P, Sorvillo S, Gagnoux-Palacios L, Angelo C, Paradisi M, Meneguzzi G, et al. Compound heterozygosity for an out-of-frame deletion and a splice site mutation in the LAMB3 gene causes nonlethal junctional epidermolysis bullosa. Biochem Biophys Res Commun. 1998;243(3):758–764. doi: 10.1006/bbrc.1998.8180
  125. Mellerio JE, Pulkkinen L, McMillan JR, Lake BD, Horn HM, Tidman MJ, et al. Pyloric atresia-junctional epidermolysis bullosa syndrome: mutations in the integrin beta4 gene (ITGB4) in two unrelated patients with mild disease. Br J Dermatol. 1998;139(5):862–871. doi: 10.1046/j.1365-2133.1998.02515.x
  126. Tasanen K, Floeth M, Schumann H, Bruckner-Tuderman L. Hemizygosity for a glycine substitution in collagen XVII: unfolding and degradation of the ectodomain. J Invest Dermatol. 2000;115(2):207–212. doi: 10.1046/j.1523-1747.2000.00049.x
  127. Yuen WY, Pas HH, Sinke RJ, Jonkman MF. Junctional epidermolysis bullosa of late onset explained by mutations in COL17A1. Br J Dermatol. 2011;164(6):1280–1284. doi: 10.1111/j.1365-2133.2011.10359.x
  128. Vanotti S, Chiaverini C, Charlesworth A, Bonnet N, Berbis P, Meneguzzi G, et al. Late-onset skin fragility in childhood: a case of junctional epidermolysis bullosa of late onset caused by a missense mutation in COL17A1. Br J Dermatol. 2013;169(3):714–715. doi: 10.1111/bjd.12353
  129. Väisänen L, Has C, Franzke C, Hurskainen T, Tuomi ML, Bruckner-Tuderman L, et al. Molecular mechanisms of junctional epidermolysis bullosa: Col 15 domain mutations decrease the thermal stability of collagen XVII. J Invest Dermatol. 2005;125(6):1112–1118. doi: 10.1111/j.0022-202X.2005.23943.x
  130. Tasanen K, Eble JA, Aumailley M, Schumann H, Baetge J, Tu H, et al. Collagen XVII is destabilized by a glycine substitution mutation in the cell adhesion domain Col15. J Biol Chem. 2000;275(5):3093–3099. doi: 10.1074/jbc.275.5.3093
  131. Huilaja L, Hurskainen T, Autio-Harmainen H, Sormunen R, Tu H, Hofmann SC, et al. Glycine substitution mutations cause intracellular accumulation of collagen XVII and affect its post-translational modifications. J Invest Dermatol. 2009;129(9):2302–2306. doi: 10.1038/jid.2009.22
  132. Pulkkinen L, Jonkman MF, McGrath JA, Kuijpers A, Paller AS, Uitto J. LAMB3 mutations in generalized atrophic benign epidermolysis bullosa: consequences at the mRNA and protein levels. Lab Invest. 1998;78(7):859–867.
  133. Hou PC, Natsuga K, Tu WT, Huang HY, Chen B, Chen LY, et al. Complexity of transcriptional and translational interference of laminin-332 subunits in junctional epidermolysis bullosa with LAMB3 mutations. Acta Derm Venereol. 2021;101(8):adv00522. doi: 10.2340/00015555-3874
  134. Mazzanti C, Gobello T, Posteraro P, Paradisi M, Meneguzzi G, Chinni L, et al. 180-kDa bullous pemphigoid antigen defective generalized atrophic benign epidermolysis bullosa: report of four cases with an unusually mild phenotype. Br J Dermatol. 1998;138(5):859–866. doi: 10.1046/j.1365-2133.1998.02226.x
  135. Ruzzi L, Pas H, Posteraro P, Mazzanti C, Didona B, Owaribe K, et al. A homozygous nonsense mutation in type XVII collagen gene (COL17A1) uncovers an alternatively spliced mRNA accounting for an unusually mild form of non-Herlitz junctional epidermolysis bullosa. J Invest Dermatol. 2001;116(1):182–187. doi: 10.1046/j.1523-1747.2001.00229.x
  136. Pasmooij AMG, Zalen S van, Nijenhuis AM, Kloosterhuis AJ, Zuiderveen J, Jonkman MF, et al. A very mild form of non-Herlitz junctional epidermolysis bullosa: BP180 rescue by outsplicing of mutated exon 30 coding for the COL15 domain. Exp Dermatol. 2004;13(2):125–128. doi: 10.1111/j.0906-6705.2004.00141.x
  137. Dietz HC, Kendzior RJ Jr. Maintenance of an open reading frame as an additional level of scrutiny during splice site selection. Nat Genet. 1994;8(2):183–188. doi: 10.1038/ng1094-183
  138. Kiritsi D, Kern JS, Schumann H, Kohlhase J, Has C, Bruckner-Tuderman L. Molecular mechanisms of phenotypic variability in junctional epidermolysis bullosa. J Med Genet. 2011;48(7):450–457. doi: 10.1136/jmg.2010.086751
  139. Franzke CW, Has C, Schulte C, Huilaja L, Tasanen K, Aumailley M, et al. C-terminal truncation impairs glycosylation of transmembrane collagen XVII and leads to intracellular accumulation. J Biol Chem. 2006;281(40):30260–30268. doi: 10.1074/jbc.M604464200
  140. Коталевская Ю.Ю., Марычева Н.М. Трудности дифференциальной диагностики подтипов пограничного типа буллезного эпидермолиза: описание двух клинических наблюдений. Альманах клинической медицины. 2019;47(1):83–93 [Kotalevskaya YuYu, Marycheva NM. Challenges of the differential diagnosis between the subtypes of the junctional epidermolysis bullosa: presentation of two clinical cases. Al'manah klinicheskoj mediciny. 2019;47(1):83–93. (In Russ.)] doi: 10.18786/2072-0505-2019-47-009
  141. Kubanov AA, Karamova AE, Chikin VV, Monchakovskaya ES, Nefedova MA. Efficacy of intradermal allogeneic fibroblast injections in junctional epidermolysis bullosa. Russian Open Medical Journal. 2022;11(3):e0315. doi: 10.15275/rusomj.2022.0315
  142. Кубанов А.А., Карамова А.Э., Чикин В.В., Богданова Е.В., Мончаковская Е.С. Эпидемиология и состояние оказания медицинской помощи больным врожденным буллезным эпидермолизом в Российской Федерации. Вестник Российской академии медицинских наук. 2018;73(6):420–430 [Kubanov AA, Karamova AE, Chikin VV, Bogdanova EV, Monchakovskaya ES. Epidemiology and providing of healthcare for patients with inherited epidermolysis bullosa in the Russian Federation. Vestnik Rossijskoj akademii medicinskih nauk. 2018;73(6):420–430. (In Russ.)] doi: 10.15690/vramn980
  143. Гаджимурадова К.М., Иванова М.А., Гаджимурадов М.Н., Алиева С.Н. Клинические и эпидемиологические особенности врожденного буллезного эпидермолиза в Республике Дагестан. Лечащий Врач. 2022;2(25):54–63. [Gadzhimuradova KM, Ivanova MA, Gadzhimuradov MN, Alieva SN. Clinical and epidemiological features of congenital epidermolysis bullosa in the Republic of Dagestan. Lechashhij Vrach. 2022;2(25)54–63. (In Russ.)] doi: 10.51793/OS.2022.25.2.009

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Kubanov A.A., Chikin V.V., Karamova A.E., Monchakovskaya E.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».