New aspects of the pathogenesis of psoriasis
- 作者: Zhukov A.S.1, Patrushev A.V.1, Khairutdinov V.R.1, Samtsov A.V.1, Kryukov E.V.1
-
隶属关系:
- S.M. Kirov Military Medical Academy
- 期: 卷 98, 编号 4 (2022)
- 页面: 31-40
- 栏目: REVIEWS
- URL: https://journals.rcsi.science/0042-4609/article/view/117624
- DOI: https://doi.org/10.25208/vdv1345
- ID: 117624
如何引用文章
全文:
详细
Psoriasis is a chronic multi-factorial immune-mediated inflammatory disease of skin and joints. The variety of clinical forms of dermatosis is consistent with various pathogenetic features of the disease progress which have been significantly supplemented and reviewed recently. Knowledge of these mechanisms will improve and personalize the prescribed therapy.
This study places the emphasis on modern ideas about the formation of T cell memory, the role of melanocytes and innate lymphoid cells. Development mechanisms of guttate and paradoxical psoriasis with important distinguishing characteristics are described separately.
Today, knowledge of the molecular basis of the disease progression has led to the creation and introduction of a number of highly effective targeted drugs into clinical practice. Further developments related to the inhibition of resident memory cells, innate lymphoid cells, as well as the study of guttate psoriasis perpetuation and the occurrence of paradoxical psoriasis will significantly increase the effectiveness of the therapy.
作者简介
Alexander Zhukov
S.M. Kirov Military Medical Academy
编辑信件的主要联系方式.
Email: doctor-vma@mail.ru
ORCID iD: 0000-0002-4915-9157
SPIN 代码: 4570-3470
MD, Cand. Sci. (Med.)
俄罗斯联邦, 6, Akademika Lebedeva str., Saint Petersburg, 194044Alexander Patrushev
S.M. Kirov Military Medical Academy
Email: alexpat2@yandex.ru
ORCID iD: 0000-0002-6989-9363
SPIN 代码: 1367-5580
MD, Dr. Sci. (Med.)
俄罗斯联邦, 6, Akademika Lebedeva str., Saint Petersburg, 194044Vladislav Khairutdinov
S.M. Kirov Military Medical Academy
Email: haric@mail.ru
ORCID iD: 0000-0002-0387-5481
SPIN 代码: 4417-9117
MD, Dr. (Sci.) Med., assistant professor
俄罗斯联邦, 6, Akademika Lebedeva str., Saint Petersburg, 194044Alexey Samtsov
S.M. Kirov Military Medical Academy
Email: avsamtsov@mail.ru
ORCID iD: 0000-0002-9458-0872
SPIN 代码: 2287-5062
MD, Dr. (Sci.) Med, Professor
俄罗斯联邦, 6, Akademika Lebedeva str., Saint Petersburg, 194044Evgeniy Kryukov
S.M. Kirov Military Medical Academy
Email: evgeniy.md@mail.ru
ORCID iD: 0000-0002-8396-1936
SPIN 代码: 3900-3441
MD, Dr. (Sci.) Med, Professor, Academician of the Russian Academy of Sciences
俄罗斯联邦, 6, Akademika Lebedeva str., Saint Petersburg, 194044参考
- Parisi R, Symmons DP, Griffiths CE, Ashcroft DM. Identification and Management of Psoriasis and Associated ComorbidiTy (IMPACT) project team. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013;133(2):377–385. doi: 10.1038/jid.2012.339
- Michalek IM, Loring B, John SM. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol Venereol. 2017;31(2):205–212. doi: 10.1111/jdv.13854
- Boehncke WH, Schn MP. Psoriasis. Lancet. 2015;386(9997):983–994. doi: 10.1016/S0140-6736(14)61909-7
- Tsoi LC, Spain SL, Knight J, Ellinghaus E, Stuart PE, Capon F, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet. 2012;44(12):1341–1348. doi: 10.1038/ng.2467.
- Tang H, Jin X, Li Y, Jiang H, Tang X, Yang X, et al. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet. 2014;46(1):45–50. doi: 10.1038/ng.2827
- Chandra A, Ray A, Senapati S, Chatterjee R. Genetic and epigenetic basis of psoriasis pathogenesis. Mol Immunol. 2015;64(2):313–323. doi: 10.1016/j.molimm.2014.12.014.
- Gudjonsson JE, Karason A, Antonsdottir A, Runarsdottir EH, Hauksson VB, Upmanyu R, Gulcher J, Stefansson K, Valdimarsson H. Psoriasis patients who are homozygous for the HLA-Cw*0602 allele have a 2.5-fold increased risk of developing psoriasis compared with Cw6 heterozygotes. Br J Dermatol. 2003;148(2):233–235. doi: 10.1046/j.1365-2133.2003.05115.x.
- Nair RP, Stuart PE, Nistor I, Hiremagalore R, Chia NVC, Jenisch S, Weichenthal M, Abecasis GR, Lim HW, Christophers E, Voorhees JJ, Elder JT. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet. 2006;78(5):827–851. doi: 10.1086/503821.
- Lonnberg AS, Skov L, Skytthe A, Kyvik KO, Pedersen OB, Thomsen SF. Heritability of psoriasis in a large twin sample. Br J Dermatol. 2013;169:412–416. doi: 10.1111/bjd.12375
- Weigle N, McBane S. Psoriasis. Am Fam Physician. 2013;87(9):626–633.
- Kimball AB, Leonardi C, Stahle M, Gulliver W, Chevrier M, Fakharzadeh S, et al. Demography, baseline disease characteristics and treatment history of patients with psoriasis enrolled in a multicentre, prospective, disease-based registry (PSOLAR). Br J Dermatol. 2014;171(1):137–147. doi: 10.1111/bjd.13013.
- Mendieta KL, Irfan M, Fernandez Faith E. Interferon-alpha induced psoriasis in a teenager. Pediatr Dermatol. 2018;35(2):e136–137. doi: 10.1111/pde.13418
- Farber EM, Nall ML, Watson W. Natural history of psoriasis in 61 twin pairs. Arch Dermatol. 1974;109(2):207-211.
- Brandrup F, Hauge M, Henningsen K, Eriksen B. Psoriasis in an unselected series of twins. Arch Dermatol. 1978;114(6):874–878.
- Mori N, Yoshikawa K, Ohno M. Psoriasis occuring in young monozygotic twins. J Dermatol. 1980;7(1):71–73. doi: 10.1111/j.1346-8138.1980.tb01945.x
- Lønnberg AS, Skov L, Skytthe A, Kyvik KO, Pedersen OB, Thomsen SF. Heritability of psoriasis in a large twin sample. Br J Dermatol. 2013;169(2):412-416. doi: 10.1111/bjd.12375
- Nestle FO. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9(10):679–691. doi: 10.1038/nri2622
- Albanesi C, Madonna S, Gisondi P, Girolomoni G. The Interplay Between Keratinocytes and Immune Cells in the Pathogenesis of Psoriasis. Front Immunol. 2018;9:1549. doi: 10.3389/fimmu.2018.01549
- Arakawa A, Siewert K, Stöhr J, Besgen P, Kim SM, Rühl G, et al. Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med. 2015;212(13):2203–2212. doi: 10.1084/jem.20151093
- Lande R, Botti E, Jandus C, Dojcinovic D, Fanelli G, Conrad C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun. 2014;3(5):5621. doi: 10.1038/ncomms6621
- Cheung KL, Jarrett R, Subramaniam S, Salimi M, Gutowska-Owsiak D, Chen YL, et al. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J Exp Med. 2016;213(11):2399–2412. doi: 10.1084/jem.20160258
- Fuentes-Duculan J, Bonifacio KM, Hawkes JE, Kunjravia N, Cueto I, Li X, et al. Autoantigens ADAMTSL5 and LL37 are significantly upregulated in active psoriasis and localized with keratinocytes, dendritic cells and other leukocytes. Exp Dermatol. 2017;26(11):1075–1082. doi: 10.1111/exd.13378
- Johnston A, Gudjonsson JE, Sigmundsdottir H, Love TJ, Valdimarsson H. Peripheral blood T cell responses to keratin peptides that share sequences with streptococcal M proteins are largely restricted to skin-homing CD8(+) T cells. Clin Exp Immunol. 2004;138(1):83–93. doi: 10.1111/j.1365-2249.2004.00600.x
- Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, et al. Plasmacytoid dendritic cells sense self‐DNA coupled with antimicrobial peptide. Nature. 2007;449:564–569. doi: 10.1038/nature06116
- Kahlenberg JM, Kaplan MJ. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol. 2013;191(10):4895–4901. doi: 10.4049/jimmunol.1302005
- Lande R, Chamilos G, Ganguly D, Demaria O, Frasca L, Durr S, et al. Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA. Eur J Immunol. 2015;45(1):203–213. doi: 10.1002/eji.201344277
- Dombrowski Y, Peric M, Koglin S, Kammerbauer C, Göss C Anz D, et al. Cytosolic DNA Triggers Inflammasome Activation in Keratinocytes in Psoriatic Lesions. Sci Transl Med. 2011;3(82):82ra38. doi: 10.1126/scitranslmed.3002001
- Paludan SR, Bowie AG. Immune sensing of DNA. Immunity. 2013;38:870–880. doi: 10.1016/j.immuni.2013.05.004
- Chiliveru S, Rahbek SH, Jensen SK, Jørgensen SE, Nissen SK, Christiansen SH, et al. Inflammatory cytokines break down intrinsic immunological tolerance of human primary keratinocytes to cytosolic DNA. J Immunol. 2014;192(5):2395–2404. doi: 10.4049/jimmunol.1302120
- Campanati A, Orciani M, Consales V, Lazzarini R, Ganzetti G, Di Benedetto G, et al. Characterization and profiling of immunomodulatory genes in resident mesenchymal stem cells reflect the Th1-Th17/Th2 imbalance of psoriasis. Arch Dermatol Res. 2014;306(10):915–920. doi: 10.1007/s00403-014-1493-3
- Wong K, Lew F, MacAry P, Kemeny D. CD40L-expressing CD8+ T cells prime CD8alpha+ DC for IL-12p70 production. Eur J Immunol. 2008;38:2251–2262. doi: 10.1002/eji.200838199
- Chong SZ, Wong KL, Lin G, Yang CM, Wong SC, Angeli V, et al. Human CD8+ T cells drive Th1 responses through the differentiation of TNF/iNOS-producing dendritic cells. Eur J Immunol. 2011;41(6):1639–1651. doi: 10.1002/eji.201041022.
- Fouser LA, Wright JF, Dunussi-Joannopoulos K, Collins M. Th17 cytokines and their emerging roles in inflammation and autoimmunity. Immunol Rev. 2008;226:87–102. doi: 10.1111/j.1600-065X.2008.00712.x
- Cargill M, Schrodi SJ, Chang M, Garcia VE, Brandon R, Callis KP, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet. 2007;80:273–290. doi: 10.1086/511051
- Ellinghaus E, Ellinghaus D, Stuart P, Nair RP, Debrus S, Raelson JV, et al. Genome-wide association study identifies a psoriasis susceptibility locus at TRAF3IP2. Nat Genet. 2010;42:991–995. doi: 10.1038/ng.689
- Tan JY, Li S, Yang K, Ma B, Chen W, Zha C, Zhang J, et al. Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: a meta-analysis. J Dermatolog Treat. 2011;22(6):323–336. doi: 10.3109/09546634.2010.487890
- Gordon KB, Leonardi CL, Lebwohl M, Blauvelt A, Cameron GS, Braun D, et al. A 52-week, open-label study of the efficacy and safety of ixekizumab, an anti-interleukin-17A monoclonal antibody, in patients with chronic plaque psoriasis. J Am Acad Dermatol. 2014;71(6):1176–1182. doi: 10.1016/j.jaad.2014.07.048
- Mease PJ. Inhibition of interleukin-17, interleukin-23 and the TH17 cell pathway in the treatment of psoriatic arthritis and psoriasis. Curr Opin Rheumatol. 2015;27(2):127–133. doi: 10.1097/BOR.0000000000000147
- Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 2007;8:639–646. doi: 10.1038/ni1467
- Cosmi L, De Palma R, Santarlasci V, Maggi L, Capone M, Frosali F, et al. Human interleukin-17-producing cells originate from a CD161+ CD4+ T cell precursor. J Exp Med 2008;205:1903–1916. doi: 10.1084/jem.20080397
- Maggi L, Santarlasci V, Capone M, Peired A, Frosali F, Crome SQ, et al. CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur J Immunol. 2010;40(8):2174–2181. doi: 10.1002/eji.200940257
- Miossec P, Kolls JK. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11:763–776. doi: 10.1038/nrd3794
- Zhu S, Qian Y. IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci (Lond). 2012;122(11):487–511. doi: 10.1042/CS20110496
- Cosmi L, Liotta F, Maggi E, Romagnani S, Annunziato F. Th17 and non-classic Th1 cells in chronic inflammatory disorders: two sides of the same coin. Int Arch Allergy Immunol. 2014;164(3):171–177. doi: 10.1159/000363502
- Chan JR, Blumenschein W, Murphy E, Diveu C, Wiekowski M, Abbondanzo S, et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med 2006;203:2577–2587. doi: 10.1084/jem.20060244
- Zhu S, Qian Y. IL-17/IL-17 receptor system in autoimmune disease: mechanisms and therapeutic potential. Clin Sci (Lond). 2012;122(11):487–511. doi: 10.1042/CS20110496
- Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 2008;9:166–175. doi: 10.1038/ni1552
- Rangel-Moreno J, Carragher DM, Luz Garcia-Hernandez M, Hwang JY, Kusser K, Hartson L, et al. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nature Immunology 2011;12:639–646. doi: 10.1038/ni.2053
- Rogers PR, Dubey C, Swain SL. Qualitative changes accompany memory T cell generation: faster, more effective responses at lower doses of antigen. J Immunol. 2000;164(5):2338–2346. doi: 10.4049/jimmunol.164.5.2338.
- Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–763. doi: 10.1146/annurev.immunol.22.012703.104702
- Clark RA. Resident memory T cells in human health and disease. Sci Transl Med. 2015;7(269):269rv1. doi: 10.1126/scitranslmed.3010641
- Padovan E. Modulation of CD4+ T Helper Cell Memory Responses in the Human Skin. Int Arch Allergy Immunol. 2017;173(3):121–137. doi: 10.1159/000477728
- McLachlan JB, Catron DM, Moon JJ, Jenkins MK. Dendritic cell antigen presentation drives simultaneous cytokine production by effector and regulatory T cells in inflamed skin. Immunity. 2009 Feb 20;30(2):277–288. doi: 10.1016/j.immuni.2008.11.013
- Elyaman W, KivisГ¤kk P, Reddy J, Chitnis T, Raddassi K, Imitola J, Bradshaw E, Kuchroo VK, Yagita H, Sayegh MH, Khoury SJ. Distinct functions of autoreactive memory and effector CD4+ T cells in experimental autoimmune encephalomyelitis. Am J Pathol. 2008 Aug;173(2):411–422. doi: 10.2353/ajpath.2008.080142
- Gaide O. Skin memory: the clinical implications. Rev Med Suisse. 2016;12(512):631–634.
- Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol. 2016;16:79–89. doi: 10.1038/nri.2015.3
- Zaid A, Hor JL, Christo SN, Groom JR, Heath WR, Mackay LK, et al. Chemokine Receptor–Dependent Control of Skin Tissue–Resident Memory T Cell Formation. J Immunol. 2017;199(7):2451–2459. doi: 10.4049/jimmunol.1700571
- Pan Y, Kupper TS. Metabolic Reprogramming and Longevity of Tissue-Resident Memory T Cells. Front Immunol. 2018;9:1347. doi: 10.3389/fimmu.2018.01347
- Cheuk S, Wikén M, Blomqvist L, Nylén S, Talme T, Ståhle M, et al. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J Immunol. 2014;192:3111. doi: 10.4049/jimmunol.1302313
- Gallais Sérézal I, Classon C, Cheuk S, Barrientos-Somarribas M, Wadman E, Martini E, et al. Resident T Cells in Resolved Psoriasis Steer Tissue Responses that Stratify Clinical Outcome. J Invest Dermatol. 2018;138(8):1754–1763. doi: 10.1016/j.jid.2018.02.030
- Kurihara K, Fujiyama T, Phadungsaksawasdi P, Ito T, Tokura Y. Significance of IL-17A-producing CD8+CD103+ skin resident memory T cells in psoriasis lesion and their possible relationship to clinical course. J Dermatol Sci. 2019;95(1):21–27. doi: 10.1016/j.jdermsci.2019.06.002
- Bhushan M, Bleiker TO, Ballsdon AE, Allen MH, Sopwith M, Robinson MK, et al. Anti-E-selectin is ineffective in the treatment of psoriasis: a randomized trial. Br J Dermatol. 2002;146(5):824–831. doi: 10.1046/j.1365-2133.2002.04743.x
- Boyman O, Hefti HP, Conrad C, Nickoloff BJ, Suter M, Nestle FO. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-α. J Exp Med. 2004;199:731–736. doi: 10.1084/jem.20031482
- Khairutdinov VR, Mikhailichenko AF, Belousova IE, Kuligina ES, Samtsov AV, Imyanitov EN. The role of intradermal proliferation of T-cells in the pathogenesis of psoriasis. An Bras Dermatol. 2017;92(1):41–44. doi: 10.1590/abd1806-4841.20175765
- Tarcha EJ, Olsen CM, Probst P, Peckham D, Muñoz-Elías EJ, Kruger JG, et al. Safety and pharmacodynamics of dalazatide, a Kv1.3 channel inhibitor, in the treatment of plaque psoriasis: A randomized phase 1b trial. PLoS One. 2017;12(7):e0180762. doi: 10.1371/journal.pone.0180762
- Bonefeld CM, Geisler C. The role of innate lymphoid cells in healthy and inflamed skin. Immunol Lett. 2016;179:25–28. doi: 10.1016/j.imlet.2016.01.005
- Xiong T, Turner JE. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases. Semin Immunopathol. 2018;40(4):393–406. doi: 10.1007/s00281-018-0670-4
- Walker JA, Barlow JL, McKenzie AN. Innate lymphoid cells — how did we miss them? Nat Rev Immunol. 2013;13:75–87. doi: 10.1038/nri3349
- Teunissen MBM, Munneke JM, Bernink JH, Spuls PI, Res PCM, Te Velde A, et al. Composition of Innate Lymphoid Cell Subsets in the Human Skin: Enrichment of NCR(+) ILC3 in Lesional Skin and Blood of Psoriasis Patients. J Invest Dermatol. 2014;134(9):2351–2360. doi: 10.1038/jid.2014.146
- Spits H, Artis D, Colonna M. Innate lymphoid cells — a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145–149. doi: 10.1038/nri3365
- Brüggen MC, Bauer WM, Reininger B, Clim E, Captarencu C, Steiner GE, et al. In Situ Mapping of Innate Lymphoid Cells in Human Skin: Evidence for Remarkable Differences between Normal and Inflamed Skin. J Invest Dermatol. 2016;136(12):2396–2405. doi: 10.1016/j.jid.2016.07.017
- Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev. 2019;32(4):e00034-18. doi: 10.1128/CMR.00034-18
- Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, et al. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J Clin Invest. 2012;122(6):2252–2256. doi: 10.1172/JCI61862
- Dyring-Andersen B, Geisler C, Agerbeck C, Lauritsen JPH, Gúdjonsdottir SD, Skov L, et al. Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin. Br J Dermatol. 2014;170(3):609–616. oi: 10.1111/bjd.12658
- Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol. 2014;134:984–991. doi: 10.1038/jid.2013.477
- Keren A, Shemer A, Ginzburg A, Ullmann Y, Schrum AG, Paus R, et al. Innate lymphoid cells 3 induce psoriasis in xenotransplanted healthy human skin. J Allergy Clin Immunol. 2018;142(1):305–308. doi: 10.1016/j.jaci.2018.02.015
- Albanesi C, Scarponi C, Pallotta S, Daniele R, Bosisio D, Madonna S. Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J Exp Med. 2009;206(1):249–58. doi: 10.1084/jem.20080129
- Berthier-Vergnes O, Bermond F, Flacher V, Massacrier C, Schmitt D, Peguet-Navarro J. TNF-alpha enhances phenotypic and functional maturation of humanepidermal Langerhans cells and induces IL-12 p40 and IP-10/CXCL-10 production. FEBS Lett. 2005;579(17):3660–3668. doi: 10.1016/j.febslet.2005.04.087
- Krueger JG, Bowcock A. Psoriasis pathophysiology: current concepts of pathogenesis. Ann Rheum Dis. 2005 Mar;64 Suppl 2 (Suppl 2):ii30-6. doi: 10.1136/ard.2004.031120
- Chong SZ, Wong KL, Lin G, Yang CM, Wong SC, Angeli V, Macary PA, Kemeny DM. Human CD8вЃє T cells drive Th1 responses through the differentiation of TNF/iNOS-producing dendritic cells. Eur J Immunol. 2011;41(6):1639–1651. doi: 10.1002/eji.201041022
- Wilsmann-Theis D, Koch S, Mindnich C, Bonness S, Schnautz S, von Bubnoff D, Bieber T. Generation and functional analysis of human TNF-О±/iNOS-producing dendritic cells (Tip-DC). Allergy. 2013l;68(7):890–898. doi: 10.1111/all.12172
- Lowes MA, Chamian F, Abello MV, Fuentes‐Duculan J, Lin SL, Nussbaum R, Novitskaya I, et al. Increase in TNF‐alpha and inducible nitric oxide synthase‐expressing dendritic cells in psoriasis and reduction with efalizumab (anti‐CD11a). Proc Natl Acad Sci U S A. 2005;102(52):19057–19062. doi: 10.1073/pnas.0509736102
- Wang CQF, Akalu YT, Suarez-Farinas M, Gonzalez J, Mitsui H, Lowes MA, Orlow SJ, Manga P, Krueger JG. IL-17 and TNF synergistically modulate cytokine expression while suppressing melanogenesis: potential relevance to psoriasis. JInvest Dermatol. 2013;133(12):2741–2752. doi: 10.1038/jid.2013.237
- Valdimarsson H, Thorleifsdottir RH, Sigurdardottir SL, Gudjonsson JE, Johnston A. Psoriasis — as an autoimmune disease caused by molecular mimicry. Trends Immunol. 2009; 30:494–501. doi: 10.1016/j.it.2009.07.008
- Thorleifsdottir RH, Sigurdardottir SL, Sigurgeirsson B, Olafsson JH, Sigurdsson MI, Petersen H, et al. Improvement of psoriasis after tonsillectomy is associated with a decrease in the frequency of circulating T cells that recognize streptococcal determinants and homologous skin determinants. J Immunol. 2012;188:5160–5165. doi: 10.4049/jimmunol.1102834
- Gudmundsdottir AS, Sigmundsdottir H, Sigurgeirsson B, Good MF, Valdimarsson H, Jonsdottir I. Is an epitope on keratin 17 a major target for autoreactive T lymphocytes in psoriasis? Clin Exp Immunol. 1999;117(3): 580–586. doi: 10.1046/j.1365-2249.1999.01013.x
- Baker BS, Laman JD, Powles A, van der Fits L, Voerman JS, Melief MJ, et al. Peptidoglycan and peptidoglycan-specific Th1 cells in psoriatic skin lesions. J Pathol. 2006;209(2):174–181. doi: 10.1002/path.1954
- Qian L, Chen W, Sun W, Li M, Zheng R, Qian Q, et al. Antimicrobial peptide LL-37 along with peptidoglycan drive monocyte polarization toward CD14(high)CD16(+) subset and may play a crucial role in the pathogenesis of psoriasis guttata. Am J Transl Res. 2015;7(6):1081–1094
- Baker BS, Powles A, Fry L. Peptidoglycan: a major aetiological factor for psoriasis? Trends in Immunology. 2006;27(12):545–551. doi: 10.1016/j.it.2006.10.001
- Flendrie M, Vissers WH, Creemers MC, de Jong EM, van de Kerkhof PC, van Riel PL. Dermatological conditions during TNF-alpha-blocking therapy in patients with rheumatoid arthritis: a prospective study. Arthritis Res Ther. 2005;7(3):R666-76. doi: 10.1186/ar1724
- Palucka AK, Blanck JP, Bennett L, Pascual V, Banchereau J. Cross-regulation of TNF and IFN-alpha in autoimmune diseases. Proc Natl Acad Sci U S A. 2005;102(9):3372–3377. doi: 10.1073/pnas.0408506102.
- Seneschal J, Milpied B, Vergier B, Lepreux S, Schaeverbeke T, Taïeb A. Cytokine imbalance with increased production of interferon-alpha in psoriasiform eruptions associated with antitumour necrosis factor-alpha treatments. Br J Dermatol. 2009;161(5):1081–1988. doi: 10.1111/j.1365-2133.2009.09329.x
- Chen X, Bäumel M, Männel DN, Howard OM, Oppenheim JJ. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J Immunol. 2007;179(1):154–161. doi: 10.4049/jimmunol.179.1.154
- Ma HL, Napierata L, Stedman N, Benoit S, Collins M, Nickerson-Nutter C, Young DA. Tumor necrosis factor alpha blockade exacerbates murine psoriasis-like disease by enhancing Th17 function and decreasing expansion of Treg cells. Arthritis Rheum. 2010;62(2):430–440. doi: 10.1002/art.27203
- Collamer AN, Guerrero KT, Henning JS, Battafarano DF. Psoriatic skin lesions induced by tumor necrosis factor antagonist therapy: a literature review and potential mechanisms of action. Arthritis Rheum. 2008;59(7):996–1001. doi: 10.1002/art.23835
补充文件
