Genetic markers for psoriatic arthritis in patients with psoriasis. Part I: non-HLA genes
- Authors: Kubanov A.A.1, Karamova A.E.1, Chikin V.V.1, Verbenko D.A.1, Znamenskaya L.F.1, Artamonova O.G.1
-
Affiliations:
- State Research Center of Dermatovenereology and Cosmetology
- Issue: Vol 97, No 4 (2021)
- Pages: 33-47
- Section: REVIEWS
- URL: https://journals.rcsi.science/0042-4609/article/view/117580
- DOI: https://doi.org/10.25208/vdv1260
- ID: 117580
Cite item
Full Text
Abstract
Psoriatic arthritis often develops in patients with psoriasis and can lead to joint deformity, stiffness, dysfunction, and disability. Psoriatic arthritis is a polygenic disease. and the issue of personalizing the prognosis of its development can only be resolved taking into account the variability of plenty genomic loci associated with the development of the disease. The personification of the prognosis of the disease can be solved taking into account the variability of the set of genomic loci with which its development is associated. The review examines genomic polymorphisms associated with the development of psoriatic arthritis not psoriasis, except of HLA polymorphisms. Genome regions containing polymorphisms, allelic variants of which are associated both with the development of psoriatic arthritis and reducing the likelihood of its occurrence, are described. It has been reported that the predisposition to the development of psoriatic arthritis in patients with psoriasis is determined by genes encoding proteins involved in inflammation and bone metabolism.
Full Text
##article.viewOnOriginalSite##About the authors
Alexey A. Kubanov
State Research Center of Dermatovenereology and Cosmetology
Email: alex@cnikvi.ru
ORCID iD: 0000-0002-7625-0503
SPIN-code: 8771-4990
MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences
Russian Federation, Korolenko str., 3, bldg 6, MoscowArfenya E. Karamova
State Research Center of Dermatovenereology and Cosmetology
Email: karamova@cnikvi.ru
ORCID iD: 0000-0003-3805-8489
SPIN-code: 3604-6491
MD, Cand. Sci. (Med.)
Russian Federation, Korolenko str., 3, bldg 6, MoscowVadim V. Chikin
State Research Center of Dermatovenereology and Cosmetology
Email: chikin@cnikvi.ru
ORCID iD: 0000-0002-9688-2727
SPIN-code: 3385-4723
MD, Dr. Sci. (Med.)
Russian Federation, Korolenko str., 3, bldg 6, MoscowDmitry A. Verbenko
State Research Center of Dermatovenereology and Cosmetology
Email: verbenko@gmail.com
ORCID iD: 0000-0002-1104-7694
SPIN-code: 8261-6561
MD, Cand. Sci. (Med.)
Russian Federation, Korolenko str., 3, bldg 6, MoscowLyudmila F. Znamenskaya
State Research Center of Dermatovenereology and Cosmetology
Email: znaml@cnikvi.ru
ORCID iD: 0000-0002-2553-0484
SPIN-code: 9552-7850
MD, Dr. Sci. (Med.)
Russian Federation, Korolenko str., 3, bldg 6, MoscowOlga G. Artamonova
State Research Center of Dermatovenereology and Cosmetology
Author for correspondence.
Email: artamonova_olga@list.ru
ORCID iD: 0000-0003-3778-4745
SPIN-code: 3308-3330
junior research associate
Russian Federation, Korolenko str., 3, bldg 6, MoscowReferences
- Alinaghi F, Calov M, Kristensen LE, Gladman DD, Coates LC, Jullien D, et al. Prevalence of psoriatic arthritis in patients with psoriasis: A systematic review and meta-analysis of observational and clinical studies. J Am Acad Dermatol. 2019;80(1):251–265.e19. doi: 10.1016/j.jaad.2018.06.027
- Talotta R, Atzeni F, Sarzi-Puttini P, Masala IF. Psoriatic arthritis: from pathogenesis to pharmacologic management. Pharmacol Res. 2019;148:104394. doi: 10.1016/j.phrs.2019.104394
- Kaeley GS, Eder L, Aydin SZ, Gutierrez M, Bakewell C. Enthesitis: A hallmark of psoriatic arthritis. Semin Arthritis Rheum. 2018;48(1):35–43. doi: 10.1016/j.semarthrit.2017.12.008
- Szczerkowska-Dobosz A, Krasowska D, Bartosińska J, Stawczyk-Macieja M, Walczak A, Owczarczyk-Saczonek A, et al. Pathogenesis of psoriasis in the “omic” era. Part IV. Epidemiology, genetics, immunopathogenesis, clinical manifestation and treatment of psoriatic arthritis. Postepy Dermatol Alergol. 2020;37(5):625–634. doi: 10.5114/ada.2020.100478
- Chimenti MS, Triggianese P, De Martino E, Conigliaro P, Fonti GL, Sunzini F, et al. An update on pathogenesis of psoriatic arthritis and potential therapeutic targets. Expert Rev Clin Immunol. 2019;15(8):823–836. doi: 10.1080/1744666X.2019.1627876
- Belasco J, Wei N. Psoriatic arthritis: what is happening at the joint? Rheumatol Ther. 2019;6:305–315. doi: 10.1007/s40744-019-0159-1
- Menon B, Gullick NJ, Walter GJ, Rajasekhar M, Garrood T, Evans HG, et al. Interleukin-17+ CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 2014;66(5):1272–1281. doi: 10.1002/art.38376
- Tateiwa D, Yoshikawa H, Kaito T. Cartilage and bone destruction in arthritis: pathogenesis and treatment strategy: a literature review. Cells. 2019;8(8):818. doi: 10.3390/cells8080818
- Soare A, Weber S, Maul L, Rauber S, Gheorghiu AM, Luber M, et al. Cutting edge: homeostasis of innate lymphoid cells is imbalanced in psoriatic arthritis. J Immunol. 2018;200(4):1249–1254. doi: 10.4049/jimmunol.1700596
- Agnesi F, Amrami KK, Frigo CA, Kaufman KR. Comparison of cartilage thickness with radiologic grade of knee osteoarthritis. SceletalRadiol. 2008;37(7):639–643. doi: 10.1007/s00256-008-0483-y
- Bartosińska J, Michalak-Stoma A, Juszkiewicz-Borowiec M, Kowal M, Chodorowska G. The assessment of selected bone and cartilage biomarkers in psoriatic patients from Poland. Mediators Inflamm. 2015;2015:194535. doi: 10.1155/2015/194535
- Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, et al. NF-κB p50 and p52 regulate receptor activator of NF-κB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem. 2007;282(25):18245–18253. doi: 10.1074/jbc.M610701200
- Sukhov A, Adamopoulos IE, Maverakis E. Interactions of the immune system with skin and bone tissue in psoriatic arthritis: a comprehensive review. Clin Rev Allergy Immunol. 2016;51(1):87–99. doi: 10.1007/s12016-016-8529-8
- Nedeva IR, Vitale M, Elson A, Hoyland JA, Bella J. Role of OSCAR signaling in osteoclastogenesis and bone disease. Front Cell Dev Biol. 2021;9:641162. doi: 10.3389/fcell.2021.641162
- Paine A, Ritchlin C. Bone remodeling in psoriasis and psoriatic arthritis: an update. CurrOpinRheumatol. 2016;28(1):66–75. doi: 10.1097/BOR.0000000000000232
- Sakkas LI, Zafiriou E, Bogdanos DP. Mini review: new treatments in psoriatic arthritis. Focus on the IL-23/17 axis. Front Pharmacol. 2019;10:872. doi: 10.3389/fphar.2019.00872
- Коротаева Т.В., Корсакова Ю.Л. Псориатический артрит: классификация, клиническая картина, диагностика, лечение. Научно-практическая ревматология. 2018;56(1):60–69. [Korotaeva TV, Korsakova YuL. Psoriatic arthritis: classification, clinical presentation, diagnosis, treatment. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2018;56(1):60–69 (In Russ.)] doi: 10.14412/1995-4484-2018-60-69
- Belinchón I, Salgado-Boquete L, López-Ferrer A, Ferran M, Coto-Segura P, Rivera R, et al. Dermatologists' role in the early diagnosis of psoriatic arthritis: Expert recommendations. Actas Dermosifiliogr (Engl Ed). 2020;111(10):835–846. doi: 10.1016/j.ad.2020.06.004
- McHugh NJ, Balachrishnan C, Jones SM. Progression of peripheral joint disease in psoriatic arthritis: a 5-yr prospective study. Rheumatology (Oxford). 2003;42(6):778–783. doi: 10.1093/rheumatology/keg217
- Gladman DD, Shuckett R, Russell ML, Thorne JC, Schachter RK. Psoriatic arthritis (PSA): an analysis of 220 patients. Q J Med. 1987;62(238):127–141.
- Gladman DD, Antoni C, Mease P, Clegg DO, Nash P. Psoriatic arthritis: Epidemiology, clinical features, course, and outcome. Ann Rheum Dis. 2005;64(Suppl. 2):ii14–ii17. doi: 10.1136/ard.2004.032482
- Queiro-Silva R, Torre-Alonso JC, Tinturé-Eguren T, Lуpez-Lagunas I. A polyarticular onset predicts erosive and deforming disease in psoriatic arthritis. Ann Rheum Dis. 2003;62(1):68–70. doi: 10.1136/ard.62.1.68
- Kane D, Stafford L, Bresnihan B, FitzGerald O. A prospective, clinical and radiological study of early psoriatic arthritis: an early synovitis clinic experience. Rheumatology (Oxford). 2003;42(12):1460–1468. doi: 10.1093/rheumatology/keg384
- Geijer M, Lindqvist U, Husmark T, Alenius GM, Larsson PT, Teleman A, et al. The Swedish early psoriatic arthritis registry 5-year follow-up: substantial radiographic progression mainly in men with high disease activity and development of dactylitis. J Rheumatol. 2015;42(11):2110–2117. doi: 10.3899/jrheum.150165
- Haroon M, Gallagher P, FitzGerald O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann Rheum Dis. 2015;74(6):1045–1050. doi: 10.1136/annrheumdis-2013-204858
- Hile G, Kahlenberg JM, Gudjonsson JE. Recent genetic advances in innate immunity of psoriatic arthritis. Clin Immunol. 2020;214:108405. doi: 10.1016/j.clim.2020.108405
- Loft ND, Skov L, Rasmussen MK, Gniadecki R, Dam TN, Brandslund I, et al. Genetic polymorphisms associated with psoriasis and development of psoriatic arthritis in patients with psoriasis. PLoS One. 2018;13(2):e0192010. doi: 10.1371/journal.pone.0192010
- Aterido A, Cañete JD, Tornero J, Ferrándiz C, Pinto JA, Gratacós J, et al. Genetic variation at the glycosaminoglycan metabolism pathway contributes to the risk of psoriatic arthritis but not psoriasis. Ann Rheum Dis. 2019;78:214158. doi: 10.1136/annrheumdis-2018-214158
- Zhang XY, Zhang HJ, Zhang Y, Fu YJ, He J, Zhu LP, et al. Identification and expression analysis of alternatively spliced isoforms of human interleukin-23 receptor gene in normal lymphoid cells and selected tumor cells. Immunogenetics. 2006;57(12):934–943. doi: 10.1007/s00251-005-0067-0
- Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168(11):5699–5708. doi: 10.4049/jimmunol.168.11.5699
- Stuart PE, Nair RP, Tsoi LC, Tejasvi T, Das S, Kang HM, et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am J Hum Genet. 2015;97(6):816–836. doi: 10.1016/j.ajhg.2015.10.019
- Budu-Aggrey A, Bowes J, Loehr S, Uebe S, Zervou MI, Helliwell P, et al. Replication of a distinct psoriatic arthritis risk variant at the IL23R locus. Ann Rheum Dis. 2016;75(7):1417–1418. doi: 10.1136/annrheumdis-2016-209290
- Zhu KJ, Zhu CY, Shi G, Fan YM. Association of IL23R polymorphisms with psoriasis and psoriatic arthritis: a meta-analysis. Inflamm Res. 2012;61(10):1149–1154. doi: 10.1007/s00011-012-0509-8.
- Zwiers A, Kraal L, van de Pouw Kraan TC, Wurdinger T, Bouma G, Kraal G. Cutting edge: a variant of the IL-23R gene associated with infammatory bowel disease induces loss of microRNA regulation and enhanced protein production. J Immunol. 2012;188(4):1573–1577. doi: 10.4049/jimmunol.1101494
- Loures MAR, Alves HV, de Moraes AG, Santos TDS, Lara FF, Neves JSF, et al. Association of TNF, IL12, and IL23 gene polymorphisms and psoriatic arthritis: meta-analysis. Expert Rev Clin Immunol. 2019;15(3):303–313. doi: 10.1080/1744666X.2019.1564039
- Sivanesan D, Beauchamp C, Quinou C, Lee J, Lesage S, Chemtob S, et al. IL23R (interleukin 23 receptor) variants protective against infammatory bowel diseases (IBD) display loss of function due to impaired protein stability and intracellular trafcking. J Biol Chem. 2016;291(16):8673–8685. doi: 10.1074/jbc.M116.715870
- Abdo AI, Tye GJ. Interleukin 23 and autoimmune diseases: current and possible future therapies. Inflamm Res. 2020;69(5):463–480. doi: 10.1007/s00011-020-01339-9
- Yang Q, Liu H, Qu L, Fu X, Yu Y, Yu G, et al. Investigation of 20 non-HLA (human leucocyte antigen) psoriasis susceptibility loci in Chinese patients with psoriatic arthritis and psoriasis vulgaris. Br J Dermatol. 2013;168(5):1060–1065. doi: 10.1111/bjd.12142
- Wu Y, He X, Huang N, Yu J, Shao B. A20: a master regulator of arthritis. Arthritis Res Ther. 2020;22 (1):220. doi: 10.1186/s13075-020-02281-1
- Martens A, van Loo G. A20 at the crossroads of cell death, inflammation, and autoimmunity. Cold Spring HarbPerspect Biol. 2020;12(1):a036418. doi: 10.1101/cshperspect.a036418
- Catrysse L, Vereecke L, Beyaert R, van Loo G. A20 in inflammation and autoimmunity. Trends Immunol. 2014;35(1):22–31. doi: 10.1016/j.it.2013.10.005
- Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science. 2010;327(5969):1135–1139. doi: 10.1126/science.1182364
- Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaBsignalling. Nature. 2004;430(7000):694–699. doi: 10.1038/nature02794
- Shembade N, Harhaj EW. Regulation of NF-kappaB signaling by the A20 deubiquitinase. Cell Mol Immunol. 2012;9(2):123–130. doi: 10.1038/cmi.2011.59
- Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 2000;289 (5488):2350–2354. doi: 10.1126/science.289.5488.2350
- Matmati M, Jacques P, Maelfait J, Verheugen E, Kool M, Sze M, et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet. 2011;43(9):908–912. doi: 10.1038/ng.874
- Cloutier JF, Veillette A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med.1999;189(1):111–121. doi: 10.1084/jem.189.1.111
- Gjörloff-Wingren A, Saxena M, Williams S, Hammi D, Mustelin T. Characterization of TCRinduced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol. 1999;29(12):3845–3854. doi: 10.1002/(SICI)1521-4141(199912)29:12<3845::AID-IMMU3845>3.0.CO;2-U
- Stanford SM, Bottini N. PTPN22: the archetypal non-HLA autoimmunity gene. Nat Rev Rheumatol. 2014;10(10):602–611. doi: 10.1038/nrrheum.2014.109
- Rawlings DJ, Dai X, Buckner JH. The role of PTPN22 risk variant in the development of autoimmunity: finding common ground between mouse and human. J Immunol. 2015;194(7):2977–2984. doi: 10.4049/jimmunol.1403034
- Juneblad K, Johansson M, Rantapää-Dahlqvist S, Alenius GM. Association between the PTPN22 +1858 C/T polymorphism and psoriatic arthritis. Arthritis Res Ther. 2011;13:R45. doi: 10.1186/ar3284
- Bowes J, Loehr S, Budu-Aggrey A, Uebe S, Bruce IN, Feletar M, et al. PTPN22 is associated with susceptibility to psoriatic arthritis but not psoriasis: evidence for a further PsA-specific risk locus. Ann Rheum Dis. 2015;74(10):1882–1885. doi: 10.1136/annrheumdis-2014-207187
- Tabata Y, Hershey GK. IL-13 receptor isoforms: breaking through the complexity. Curr Allergy Asthma Rep. 2007;7(5):338–345. doi: 10.1007/s11882-007-0051-x
- Spadaro A, Rinaldi T, Riccieri V, Valesini G, Taccari E. Interleukin 13 in synovial fluid and serum of patients with psoriatic arthritis. Ann Rheum Dis. 2002;61(2):174–176. doi: 10.1136/ard.61.2.174
- Hart PH, Ahern MJ, Smith MD, Finlay-Jones JJ. Regulatory effects of IL-13 on synovial fluid macrophages and blood monocytes from patients with inflammatory arthritis. Clin Exp Immunol. 1995;99(3):331–337. doi: 10.1111/j.1365-2249.1995.tb05554.x
- Szodoray P, Alex P, Chappell-Woodward CM, Madland TM, Knowlton N, Dozmorov I, et al. Circulating cytokines in Norwegian patients with psoriatic arthritis determined by a multiplex cytokine array system. Rheumatology (Oxford). 2007;46(3):417–425. doi: 10.1093/rheumatology/kel306
- Bessis N, Boissier MC, Ferrara P, Blankenstein T, Fradelizi D, Fournier C. Attenuation of collagen-induced arthritis in mice by treatment with vector cells engineered to secrete interleukin-13. Eur J Immunol. 1996;26(10):2399–2403. doi: 10.1002/eji.1830261020
- Eder L, Chandran V, Pellett F, Pollock R, Shanmugarajah S, Rosen CF, et al. IL13 gene polymorphism is a marker for psoriatic arthritis among psoriasis patients. Ann Rheum Dis. 2011;70(9):1594–1598. doi: 10.1136/ard.2010.147421
- Bowes J, Eyre S, Flynn E, Ho P, Salah S, Warren RB, et al. Evidence to support IL-13 as a risk locus for psoriatic arthritis but not psoriasis vulgaris. Ann Rheum Dis. 2011;70(6):1016–1019. doi: 10.1136/ard.2010.143123
- Duffin KC, Freeny IC, Schrodi SJ, Wong B, Feng BJ, Soltani-Arabshahi R, et al. Association between IL13 polymorphisms and psoriatic arthritis is modified by smoking. J Invest Dermatol. 2009;129(12):2777–2783. doi: 10.1038/jid.2009.169
- Butt C, Gladman D, Rahman P. PPAR-gamma gene polymorphisms and psoriatic arthritis. J Rheumatol. 2006;33(8):1631–1633.
- Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391(6662):82–86. doi: 10.1038/34184
- Keshamouni VG, Arenberg DA, Reddy RC, Newstead MJ, Anthwal S, Standiford TJ. PPAR-gamma activation inhibits angiogenesis by blocking ELR+CXC chemokine production in non-small cell lung cancer. Neoplasia. 2005;7(3):294–301. doi: 10.1593/neo.04601
- Bowes J, Ho P, Flynn E, Salah S, McHugh N, FitzGerald O, et al. Investigation of IL1, VEGF, PPARG and MEFV genes in psoriatic arthritis susceptibility. Ann Rheum Dis. 2012;71(2):313–314. doi: 10.1136/ard.2011.154690
- Stuart PE, Nair RP, Ellinghaus E, Ding J, Tejasvi T, Gudjonsson JE, Li Y, et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat Genet. 2010;42(11):1000–1004. doi: 10.1038/ng.693
- Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci USA. 1994;91(7):2752–2756. doi: 10.1073/pnas.91.7.2752
- Sozzani S, Luini W, Borsatti A, Polentarutti N, Zhou D, Piemonti L, et al. Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J Immunol. 1997;159(4):1993–2000
- Weber KS, Nelson PJ, Gröne HJ, Weber C. Expression of CCR2 by endothelial cells: implications for MCP-1 mediated wound injury repair and in vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol. 1999;19(9):2085–2093. doi: 10.1161/01.atv.19.9.2085
- Zheng Y, Qin L, Zacarías NV, de Vries H, Han GW, Gustavsson M, Dabros M, et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature. 2016;540(7633):458–461. doi: 10.1038/nature20605
- Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ, Wijtmans M, et al. Pharmacological modulation of chemokine receptor function. Br J Pharmacol. 2012;165(6):1617–1643. doi: 10.1111/j.1476-5381.2011.01551.x
- Soto-Sánchez J, Santos-Juanes J, Coto-Segura P, Coto E, Díaz M, Rodríguez I, et al. Genetic variation at the CCR5/CCR2 gene cluster and risk of psoriasis and psoriatic arthritis. Cytokine. 2010;50(2):114–116. doi: 10.1016/j.cyto.2010.01.006
- Bowes J, Budu-Aggrey A, Huffmeier U, Uebe S, Steel K, Hebert HL, et al. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat Commun. 2015;6:6046. doi: 10.1038/ncomms7046
- Becher B, Tugues S, Greter M. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity. 2016;45(5):963–973. doi: 10.1016/j.immuni.2016.10.026
- Komuczki J, Tuzlak S, Friebel E, Hartwig T, Spath S, Rosenstiel P, et al. Fate-mapping of GM-CSF expression identifies a discrete subset of inflammation-driving T helper cells regulated by cytokines IL-23 and IL-1β. Immunity. 2019;50(5):1289–1304.e6. doi: 10.1016/j.immuni.2019.04.006
- Myllyharju J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol. 2003;22 (1):15–24. doi: 10.1016/s0945-053x(03)00006-4
- Aro E, Khatri R, Gerard-O'Riley R. Hypoxia-inducible factor-1 (HIF-1) but not HIF-2 is essential for hypoxic induction of collagen prolyl 4-hydroxylases in primary newborn mouse epiphyseal growth plate chondrocytes. J Biol Chem. 2012;287(44):37134–37144. doi: 10.1074/jbc.M112.352872
- Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem. 2013;288(15):10819–10829. doi: 10.1074/jbc.M112.442939
- Fähling M, Mrowka R, Steege A, Nebrich G, Perlewitz A, Persson PB, et al. Translational control of collagen prolyl 4-hydroxylase-alpha(I) gene expression under hypoxia. J Biol Chem. 2006;281(36):26089–26101. doi: 10.1074/jbc.M604939200
- Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–274. doi: 10.1146/annurev.immunol.23.021704.115526
- Chandran V, Bull SB, Pellett FJ, Ayearst R, Pollock RA, Gladman DD. Killer-cell immunoglobulin-like receptor gene polymorphisms and susceptibility to psoriatic arthritis. Rheumatology (Oxford). 2014;53(2):233–239. doi: 10.1093/rheumatology/ket296
- Kulkarni S, Martin MP, Carrington M. The Yin and Yang of HLA and KIR in human disease. Semin Immunol. 2008;20(6):343–352. doi: 10.1016/j.smim.2008.06.003
- Martin MP, Nelson G, Lee JH, Pellett F, Gao X, Wade J, et al. Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol. 2002;169(6):2818–2822. doi: 10.4049/jimmunol.169.6.2818
- Williams F, Meenagh A, Sleator C, Cook D, Fernandez-Vina M, Bowcock AM, et al. Activating killer cell immunoglobulin-like receptor gene KIR2DS1 is associated with psoriatic arthritis. Hum Immunol 2005;66(7):836–841. doi: 10.1016/j.humimm.2005.04.005
- Popa OM, Cherciu M, Cherciu LI, Dutescu MI, Bojinca M, Bojinca V, et al. ERAP1 and ERAP2 gene variations influence the risk of psoriatic arthritis in Romanian population. Arch Immunol Ther Exp (Warsz). 2016;64(Suppl 1):123–129. doi: 10.1007/s00005-016-0444-4
- Mpakali A, Giastas P, Mathioudakis N, Mavridis IM, Saridakis E, Stratikos E. Structural basis for antigenic peptide recognition and processing by endoplasmic reticulum (ER) aminopeptidase 2. J Biol Chem. 2015;290(43):26021–26032. doi: 10.1074/jbc.M115.685909
- Andrés AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin SQ, Hurle B, et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 2010;6(10):e1001157. doi: 10.1371/journal.pgen.1001157
- Wiśniewski A, Matusiak Ł, Szczerkowska-Dobosz A, Nowak I, Łuszczek W, Kuśnierczyk P. The association of ERAP1 and ERAP2 single nucleotide polymorphisms and their haplotypes with psoriasis vulgaris is dependent on the presence or absence of the HLA-C*06:02 allele and age at disease onset. Hum Immunol. 2018;79(2):109–116. doi: 10.1016/j.humimm.2017.11.010
- Julià A, Tortosa R, Hernanz JM, Cañete JD, Fonseca E, Ferrándiz C, et al. Risk variants for psoriasisvulgaris in a large case–control collection and association withclinicalsubphenotypes. Hum Mol Genet. 2012;21(20):4549–4557. doi: 10.1093/hmg/dds29
- GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–585. doi: 10.1038/ng.2653
- Togayachi A, Kozono Y, Kuno A, Ohkura T, Sato T, Hirabayashi J, et al. Beta3GnT2 (B3GNT2), a major polylactosaminesynthase: analysis of B3GNT2-deficient mice. Methods Enzymol. 2010;479:185–204. doi: 10.1016/S0076-6879(10)79011-X
- Gulati K, Poluri KM. Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconj J. 2016;33(1):1–17. doi: 10.1007/s10719-015-9642-2
- Schett G, Coates LC, Ash ZR, Finzel S, Conaghan PG. Structural damage in rheumatoid arthritis,psoriatic arthritis, and ankylosing spondylitis: traditional views, novel insights gainedfrom TNF blockade, and concepts for the future. Arthritis Res Ther. 2011;13(Suppl1):S4. doi: 10.1186/1478-6354-13-S1-S4
- Caterson B, Flannery CR, Hughes CE, Little CB. Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol. 2000;19(4):333–344. doi: 10.1016/s0945-053x(00)00078-0
- Arner EC, Hughes CE, Decicco CP, Caterson B, Tortorella MD. Cytokine-induced cartilage proteoglycandegradation is mediated by aggrecanase. Osteoarthritis Cartilage. 1998;6(3):214–228. doi: 10.1053/joca.1998.0114
- Sugimoto K, Iizawa T, Harada H, Yamada K, Katsumata M, Takahashi M. Cartilage degradation independent of MMP/aggrecanases. Osteoarthritis Cartilage. 2004;12(12):1006–1014. doi: 10.1016/j.joca.2004.09.003
- Togayachi A, Kozono Y, Ishida H, Abe S, Suzuki N, Tsunoda Y, et al. Polylactosamine on glycoproteins influencesbasal levels of lymphocyte and macrophage activation. Proc Natl Acad Sci U S A. 2007;104(40):15829–15834. doi: 10.1073/pnas.0707426104
- Budu-Aggrey A, Bowes J, Stuart PE, Zawistowski M, Tsoi LC, Nair R, et al. A rare coding allele in IFIH1 is protective for psoriatic arthritis. Ann Rheum Dis. 2017;76(7):1321–1324. doi: 10.1136/annrheumdis-2016-210592
- Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a geneimplicatedinantiviral responses, protect against type 1 diabetes. Science. 2009;324(5925):387–389. doi: 10.1126/science.1167728
- Goubau D, Deddouche S, Reis e Sousa C. Cytosolic sensing of viruses. Immunity. 2013;38 (5):855–869. doi: 10.1016/j.immuni.2013.05.007
- Rice GI, Del Toro Duany Y, Jenkinson EM, Forte GM, Anderson BH, Ariaudo G, et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 2014;46(5):503–509. doi: 10.1038/ng.2933
- Pollock RA, Abji F, Liang K, Chandran V, Pellett FJ, Virtanen C, et al. Gene expression differences between psoriasis patients with and without inflammatory arthritis. J Invest Dermatol. 2015;135(2):620–623. doi: 10.1038/jid.2014.414
- Duan Z, Li FQ, Wechsler J. A novel notch protein, N2N, targeted by neutrophil elastase and implicated in hereditary neutropenia. Mol Cell Biol. 2004;24(1):58–70. doi: 10.1128/MCB.24.1.58-70.2004
- Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, et al. The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol. 2008;28(20):6402–6412. doi: 10.1128/MCB.00299-08
- Rahmati S, Tsoi L, O'Rielly D, Chandran V, Rahman P. Complexities in genetics of psoriatic arthritis. Curr Rheumatol Rep. 2020;22(4):10. doi: 10.1007/s11926-020-0886-x
- Carvalho AL, Hedrich CM. The molecular pathophysiology of psoriatic arthritis — The complex interplay between genetic predisposition, epigenetics factors, and the microbiome. Front Mol Biosci. 2021;8:662047. doi: 10.3389/fmolb.2021.662047
- Patrick MT, Stuart PE, Raja K, Gudjonsson JE, Tejasvi T, Yang J, et al. Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nat Commun. 2018;9(1):4178. doi: 10.1038/s41467-018-06672-6
Supplementary files
