Genetic markers for psoriatic arthritis in patients with psoriasis. Part I: non-HLA genes

Cover Page

Cite item

Full Text

Abstract

Psoriatic arthritis often develops in patients with psoriasis and can lead to joint deformity, stiffness, dysfunction, and disability. Psoriatic arthritis is a polygenic disease. and the issue of personalizing the prognosis of its development can only be resolved taking into account the variability of plenty genomic loci associated with the development of the disease. The personification of the prognosis of the disease can be solved taking into account the variability of the set of genomic loci with which its development is associated. The review examines genomic polymorphisms associated with the development of psoriatic arthritis not psoriasis, except of HLA polymorphisms. Genome regions containing polymorphisms, allelic variants of which are associated both with the development of psoriatic arthritis and reducing the likelihood of its occurrence, are described. It has been reported that the predisposition to the development of psoriatic arthritis in patients with psoriasis is determined by genes encoding proteins involved in inflammation and bone metabolism.

About the authors

Alexey A. Kubanov

State Research Center of Dermatovenereology and Cosmetology

Email: alex@cnikvi.ru
ORCID iD: 0000-0002-7625-0503
SPIN-code: 8771-4990

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Korolenko str., 3, bldg 6, Moscow

Arfenya E. Karamova

State Research Center of Dermatovenereology and Cosmetology

Email: karamova@cnikvi.ru
ORCID iD: 0000-0003-3805-8489
SPIN-code: 3604-6491

MD, Cand. Sci. (Med.)

Russian Federation, Korolenko str., 3, bldg 6, Moscow

Vadim V. Chikin

State Research Center of Dermatovenereology and Cosmetology

Email: chikin@cnikvi.ru
ORCID iD: 0000-0002-9688-2727
SPIN-code: 3385-4723

MD, Dr. Sci. (Med.)

Russian Federation, Korolenko str., 3, bldg 6, Moscow

Dmitry A. Verbenko

State Research Center of Dermatovenereology and Cosmetology

Email: verbenko@gmail.com
ORCID iD: 0000-0002-1104-7694
SPIN-code: 8261-6561

MD, Cand. Sci. (Med.)

Russian Federation, Korolenko str., 3, bldg 6, Moscow

Lyudmila F. Znamenskaya

State Research Center of Dermatovenereology and Cosmetology

Email: znaml@cnikvi.ru
ORCID iD: 0000-0002-2553-0484
SPIN-code: 9552-7850

MD, Dr. Sci. (Med.)

Russian Federation, Korolenko str., 3, bldg 6, Moscow

Olga G. Artamonova

State Research Center of Dermatovenereology and Cosmetology

Author for correspondence.
Email: artamonova_olga@list.ru
ORCID iD: 0000-0003-3778-4745
SPIN-code: 3308-3330

junior research associate

Russian Federation, Korolenko str., 3, bldg 6, Moscow

References

  1. Alinaghi F, Calov M, Kristensen LE, Gladman DD, Coates LC, Jullien D, et al. Prevalence of psoriatic arthritis in patients with psoriasis: A systematic review and meta-analysis of observational and clinical studies. J Am Acad Dermatol. 2019;80(1):251–265.e19. doi: 10.1016/j.jaad.2018.06.027
  2. Talotta R, Atzeni F, Sarzi-Puttini P, Masala IF. Psoriatic arthritis: from pathogenesis to pharmacologic management. Pharmacol Res. 2019;148:104394. doi: 10.1016/j.phrs.2019.104394
  3. Kaeley GS, Eder L, Aydin SZ, Gutierrez M, Bakewell C. Enthesitis: A hallmark of psoriatic arthritis. Semin Arthritis Rheum. 2018;48(1):35–43. doi: 10.1016/j.semarthrit.2017.12.008
  4. Szczerkowska-Dobosz A, Krasowska D, Bartosińska J, Stawczyk-Macieja M, Walczak A, Owczarczyk-Saczonek A, et al. Pathogenesis of psoriasis in the “omic” era. Part IV. Epidemiology, genetics, immunopathogenesis, clinical manifestation and treatment of psoriatic arthritis. Postepy Dermatol Alergol. 2020;37(5):625–634. doi: 10.5114/ada.2020.100478
  5. Chimenti MS, Triggianese P, De Martino E, Conigliaro P, Fonti GL, Sunzini F, et al. An update on pathogenesis of psoriatic arthritis and potential therapeutic targets. Expert Rev Clin Immunol. 2019;15(8):823–836. doi: 10.1080/1744666X.2019.1627876
  6. Belasco J, Wei N. Psoriatic arthritis: what is happening at the joint? Rheumatol Ther. 2019;6:305–315. doi: 10.1007/s40744-019-0159-1
  7. Menon B, Gullick NJ, Walter GJ, Rajasekhar M, Garrood T, Evans HG, et al. Interleukin-17+ CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 2014;66(5):1272–1281. doi: 10.1002/art.38376
  8. Tateiwa D, Yoshikawa H, Kaito T. Cartilage and bone destruction in arthritis: pathogenesis and treatment strategy: a literature review. Cells. 2019;8(8):818. doi: 10.3390/cells8080818
  9. Soare A, Weber S, Maul L, Rauber S, Gheorghiu AM, Luber M, et al. Cutting edge: homeostasis of innate lymphoid cells is imbalanced in psoriatic arthritis. J Immunol. 2018;200(4):1249–1254. doi: 10.4049/jimmunol.1700596
  10. Agnesi F, Amrami KK, Frigo CA, Kaufman KR. Comparison of cartilage thickness with radiologic grade of knee osteoarthritis. SceletalRadiol. 2008;37(7):639–643. doi: 10.1007/s00256-008-0483-y
  11. Bartosińska J, Michalak-Stoma A, Juszkiewicz-Borowiec M, Kowal M, Chodorowska G. The assessment of selected bone and cartilage biomarkers in psoriatic patients from Poland. Mediators Inflamm. 2015;2015:194535. doi: 10.1155/2015/194535
  12. Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, et al. NF-κB p50 and p52 regulate receptor activator of NF-κB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem. 2007;282(25):18245–18253. doi: 10.1074/jbc.M610701200
  13. Sukhov A, Adamopoulos IE, Maverakis E. Interactions of the immune system with skin and bone tissue in psoriatic arthritis: a comprehensive review. Clin Rev Allergy Immunol. 2016;51(1):87–99. doi: 10.1007/s12016-016-8529-8
  14. Nedeva IR, Vitale M, Elson A, Hoyland JA, Bella J. Role of OSCAR signaling in osteoclastogenesis and bone disease. Front Cell Dev Biol. 2021;9:641162. doi: 10.3389/fcell.2021.641162
  15. Paine A, Ritchlin C. Bone remodeling in psoriasis and psoriatic arthritis: an update. CurrOpinRheumatol. 2016;28(1):66–75. doi: 10.1097/BOR.0000000000000232
  16. Sakkas LI, Zafiriou E, Bogdanos DP. Mini review: new treatments in psoriatic arthritis. Focus on the IL-23/17 axis. Front Pharmacol. 2019;10:872. doi: 10.3389/fphar.2019.00872
  17. Коротаева Т.В., Корсакова Ю.Л. Псориатический артрит: классификация, клиническая картина, диагностика, лечение. Научно-практическая ревматология. 2018;56(1):60–69. [Korotaeva TV, Korsakova YuL. Psoriatic arthritis: classification, clinical presentation, diagnosis, treatment. Nauchno-Prakticheskaya Revmatologiya = Rheumatology Science and Practice. 2018;56(1):60–69 (In Russ.)] doi: 10.14412/1995-4484-2018-60-69
  18. Belinchón I, Salgado-Boquete L, López-Ferrer A, Ferran M, Coto-Segura P, Rivera R, et al. Dermatologists' role in the early diagnosis of psoriatic arthritis: Expert recommendations. Actas Dermosifiliogr (Engl Ed). 2020;111(10):835–846. doi: 10.1016/j.ad.2020.06.004
  19. McHugh NJ, Balachrishnan C, Jones SM. Progression of peripheral joint disease in psoriatic arthritis: a 5-yr prospective study. Rheumatology (Oxford). 2003;42(6):778–783. doi: 10.1093/rheumatology/keg217
  20. Gladman DD, Shuckett R, Russell ML, Thorne JC, Schachter RK. Psoriatic arthritis (PSA): an analysis of 220 patients. Q J Med. 1987;62(238):127–141.
  21. Gladman DD, Antoni C, Mease P, Clegg DO, Nash P. Psoriatic arthritis: Epidemiology, clinical features, course, and outcome. Ann Rheum Dis. 2005;64(Suppl. 2):ii14–ii17. doi: 10.1136/ard.2004.032482
  22. Queiro-Silva R, Torre-Alonso JC, Tinturé-Eguren T, Lуpez-Lagunas I. A polyarticular onset predicts erosive and deforming disease in psoriatic arthritis. Ann Rheum Dis. 2003;62(1):68–70. doi: 10.1136/ard.62.1.68
  23. Kane D, Stafford L, Bresnihan B, FitzGerald O. A prospective, clinical and radiological study of early psoriatic arthritis: an early synovitis clinic experience. Rheumatology (Oxford). 2003;42(12):1460–1468. doi: 10.1093/rheumatology/keg384
  24. Geijer M, Lindqvist U, Husmark T, Alenius GM, Larsson PT, Teleman A, et al. The Swedish early psoriatic arthritis registry 5-year follow-up: substantial radiographic progression mainly in men with high disease activity and development of dactylitis. J Rheumatol. 2015;42(11):2110–2117. doi: 10.3899/jrheum.150165
  25. Haroon M, Gallagher P, FitzGerald O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann Rheum Dis. 2015;74(6):1045–1050. doi: 10.1136/annrheumdis-2013-204858
  26. Hile G, Kahlenberg JM, Gudjonsson JE. Recent genetic advances in innate immunity of psoriatic arthritis. Clin Immunol. 2020;214:108405. doi: 10.1016/j.clim.2020.108405
  27. Loft ND, Skov L, Rasmussen MK, Gniadecki R, Dam TN, Brandslund I, et al. Genetic polymorphisms associated with psoriasis and development of psoriatic arthritis in patients with psoriasis. PLoS One. 2018;13(2):e0192010. doi: 10.1371/journal.pone.0192010
  28. Aterido A, Cañete JD, Tornero J, Ferrándiz C, Pinto JA, Gratacós J, et al. Genetic variation at the glycosaminoglycan metabolism pathway contributes to the risk of psoriatic arthritis but not psoriasis. Ann Rheum Dis. 2019;78:214158. doi: 10.1136/annrheumdis-2018-214158
  29. Zhang XY, Zhang HJ, Zhang Y, Fu YJ, He J, Zhu LP, et al. Identification and expression analysis of alternatively spliced isoforms of human interleukin-23 receptor gene in normal lymphoid cells and selected tumor cells. Immunogenetics. 2006;57(12):934–943. doi: 10.1007/s00251-005-0067-0
  30. Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168(11):5699–5708. doi: 10.4049/jimmunol.168.11.5699
  31. Stuart PE, Nair RP, Tsoi LC, Tejasvi T, Das S, Kang HM, et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am J Hum Genet. 2015;97(6):816–836. doi: 10.1016/j.ajhg.2015.10.019
  32. Budu-Aggrey A, Bowes J, Loehr S, Uebe S, Zervou MI, Helliwell P, et al. Replication of a distinct psoriatic arthritis risk variant at the IL23R locus. Ann Rheum Dis. 2016;75(7):1417–1418. doi: 10.1136/annrheumdis-2016-209290
  33. Zhu KJ, Zhu CY, Shi G, Fan YM. Association of IL23R polymorphisms with psoriasis and psoriatic arthritis: a meta-analysis. Inflamm Res. 2012;61(10):1149–1154. doi: 10.1007/s00011-012-0509-8.
  34. Zwiers A, Kraal L, van de Pouw Kraan TC, Wurdinger T, Bouma G, Kraal G. Cutting edge: a variant of the IL-23R gene associated with infammatory bowel disease induces loss of microRNA regulation and enhanced protein production. J Immunol. 2012;188(4):1573–1577. doi: 10.4049/jimmunol.1101494
  35. Loures MAR, Alves HV, de Moraes AG, Santos TDS, Lara FF, Neves JSF, et al. Association of TNF, IL12, and IL23 gene polymorphisms and psoriatic arthritis: meta-analysis. Expert Rev Clin Immunol. 2019;15(3):303–313. doi: 10.1080/1744666X.2019.1564039
  36. Sivanesan D, Beauchamp C, Quinou C, Lee J, Lesage S, Chemtob S, et al. IL23R (interleukin 23 receptor) variants protective against infammatory bowel diseases (IBD) display loss of function due to impaired protein stability and intracellular trafcking. J Biol Chem. 2016;291(16):8673–8685. doi: 10.1074/jbc.M116.715870
  37. Abdo AI, Tye GJ. Interleukin 23 and autoimmune diseases: current and possible future therapies. Inflamm Res. 2020;69(5):463–480. doi: 10.1007/s00011-020-01339-9
  38. Yang Q, Liu H, Qu L, Fu X, Yu Y, Yu G, et al. Investigation of 20 non-HLA (human leucocyte antigen) psoriasis susceptibility loci in Chinese patients with psoriatic arthritis and psoriasis vulgaris. Br J Dermatol. 2013;168(5):1060–1065. doi: 10.1111/bjd.12142
  39. Wu Y, He X, Huang N, Yu J, Shao B. A20: a master regulator of arthritis. Arthritis Res Ther. 2020;22 (1):220. doi: 10.1186/s13075-020-02281-1
  40. Martens A, van Loo G. A20 at the crossroads of cell death, inflammation, and autoimmunity. Cold Spring HarbPerspect Biol. 2020;12(1):a036418. doi: 10.1101/cshperspect.a036418
  41. Catrysse L, Vereecke L, Beyaert R, van Loo G. A20 in inflammation and autoimmunity. Trends Immunol. 2014;35(1):22–31. doi: 10.1016/j.it.2013.10.005
  42. Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science. 2010;327(5969):1135–1139. doi: 10.1126/science.1182364
  43. Wertz IE, O'Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaBsignalling. Nature. 2004;430(7000):694–699. doi: 10.1038/nature02794
  44. Shembade N, Harhaj EW. Regulation of NF-kappaB signaling by the A20 deubiquitinase. Cell Mol Immunol. 2012;9(2):123–130. doi: 10.1038/cmi.2011.59
  45. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 2000;289 (5488):2350–2354. doi: 10.1126/science.289.5488.2350
  46. Matmati M, Jacques P, Maelfait J, Verheugen E, Kool M, Sze M, et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet. 2011;43(9):908–912. doi: 10.1038/ng.874
  47. Cloutier JF, Veillette A. Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med.1999;189(1):111–121. doi: 10.1084/jem.189.1.111
  48. Gjörloff-Wingren A, Saxena M, Williams S, Hammi D, Mustelin T. Characterization of TCRinduced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol. 1999;29(12):3845–3854. doi: 10.1002/(SICI)1521-4141(199912)29:12<3845::AID-IMMU3845>3.0.CO;2-U
  49. Stanford SM, Bottini N. PTPN22: the archetypal non-HLA autoimmunity gene. Nat Rev Rheumatol. 2014;10(10):602–611. doi: 10.1038/nrrheum.2014.109
  50. Rawlings DJ, Dai X, Buckner JH. The role of PTPN22 risk variant in the development of autoimmunity: finding common ground between mouse and human. J Immunol. 2015;194(7):2977–2984. doi: 10.4049/jimmunol.1403034
  51. Juneblad K, Johansson M, Rantapää-Dahlqvist S, Alenius GM. Association between the PTPN22 +1858 C/T polymorphism and psoriatic arthritis. Arthritis Res Ther. 2011;13:R45. doi: 10.1186/ar3284
  52. Bowes J, Loehr S, Budu-Aggrey A, Uebe S, Bruce IN, Feletar M, et al. PTPN22 is associated with susceptibility to psoriatic arthritis but not psoriasis: evidence for a further PsA-specific risk locus. Ann Rheum Dis. 2015;74(10):1882–1885. doi: 10.1136/annrheumdis-2014-207187
  53. Tabata Y, Hershey GK. IL-13 receptor isoforms: breaking through the complexity. Curr Allergy Asthma Rep. 2007;7(5):338–345. doi: 10.1007/s11882-007-0051-x
  54. Spadaro A, Rinaldi T, Riccieri V, Valesini G, Taccari E. Interleukin 13 in synovial fluid and serum of patients with psoriatic arthritis. Ann Rheum Dis. 2002;61(2):174–176. doi: 10.1136/ard.61.2.174
  55. Hart PH, Ahern MJ, Smith MD, Finlay-Jones JJ. Regulatory effects of IL-13 on synovial fluid macrophages and blood monocytes from patients with inflammatory arthritis. Clin Exp Immunol. 1995;99(3):331–337. doi: 10.1111/j.1365-2249.1995.tb05554.x
  56. Szodoray P, Alex P, Chappell-Woodward CM, Madland TM, Knowlton N, Dozmorov I, et al. Circulating cytokines in Norwegian patients with psoriatic arthritis determined by a multiplex cytokine array system. Rheumatology (Oxford). 2007;46(3):417–425. doi: 10.1093/rheumatology/kel306
  57. Bessis N, Boissier MC, Ferrara P, Blankenstein T, Fradelizi D, Fournier C. Attenuation of collagen-induced arthritis in mice by treatment with vector cells engineered to secrete interleukin-13. Eur J Immunol. 1996;26(10):2399–2403. doi: 10.1002/eji.1830261020
  58. Eder L, Chandran V, Pellett F, Pollock R, Shanmugarajah S, Rosen CF, et al. IL13 gene polymorphism is a marker for psoriatic arthritis among psoriasis patients. Ann Rheum Dis. 2011;70(9):1594–1598. doi: 10.1136/ard.2010.147421
  59. Bowes J, Eyre S, Flynn E, Ho P, Salah S, Warren RB, et al. Evidence to support IL-13 as a risk locus for psoriatic arthritis but not psoriasis vulgaris. Ann Rheum Dis. 2011;70(6):1016–1019. doi: 10.1136/ard.2010.143123
  60. Duffin KC, Freeny IC, Schrodi SJ, Wong B, Feng BJ, Soltani-Arabshahi R, et al. Association between IL13 polymorphisms and psoriatic arthritis is modified by smoking. J Invest Dermatol. 2009;129(12):2777–2783. doi: 10.1038/jid.2009.169
  61. Butt C, Gladman D, Rahman P. PPAR-gamma gene polymorphisms and psoriatic arthritis. J Rheumatol. 2006;33(8):1631–1633.
  62. Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391(6662):82–86. doi: 10.1038/34184
  63. Keshamouni VG, Arenberg DA, Reddy RC, Newstead MJ, Anthwal S, Standiford TJ. PPAR-gamma activation inhibits angiogenesis by blocking ELR+CXC chemokine production in non-small cell lung cancer. Neoplasia. 2005;7(3):294–301. doi: 10.1593/neo.04601
  64. Bowes J, Ho P, Flynn E, Salah S, McHugh N, FitzGerald O, et al. Investigation of IL1, VEGF, PPARG and MEFV genes in psoriatic arthritis susceptibility. Ann Rheum Dis. 2012;71(2):313–314. doi: 10.1136/ard.2011.154690
  65. Stuart PE, Nair RP, Ellinghaus E, Ding J, Tejasvi T, Gudjonsson JE, Li Y, et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat Genet. 2010;42(11):1000–1004. doi: 10.1038/ng.693
  66. Charo IF, Myers SJ, Herman A, Franci C, Connolly AJ, Coughlin SR. Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proc Natl Acad Sci USA. 1994;91(7):2752–2756. doi: 10.1073/pnas.91.7.2752
  67. Sozzani S, Luini W, Borsatti A, Polentarutti N, Zhou D, Piemonti L, et al. Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J Immunol. 1997;159(4):1993–2000
  68. Weber KS, Nelson PJ, Gröne HJ, Weber C. Expression of CCR2 by endothelial cells: implications for MCP-1 mediated wound injury repair and in vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol. 1999;19(9):2085–2093. doi: 10.1161/01.atv.19.9.2085
  69. Zheng Y, Qin L, Zacarías NV, de Vries H, Han GW, Gustavsson M, Dabros M, et al. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature. 2016;540(7633):458–461. doi: 10.1038/nature20605
  70. Scholten DJ, Canals M, Maussang D, Roumen L, Smit MJ, Wijtmans M, et al. Pharmacological modulation of chemokine receptor function. Br J Pharmacol. 2012;165(6):1617–1643. doi: 10.1111/j.1476-5381.2011.01551.x
  71. Soto-Sánchez J, Santos-Juanes J, Coto-Segura P, Coto E, Díaz M, Rodríguez I, et al. Genetic variation at the CCR5/CCR2 gene cluster and risk of psoriasis and psoriatic arthritis. Cytokine. 2010;50(2):114–116. doi: 10.1016/j.cyto.2010.01.006
  72. Bowes J, Budu-Aggrey A, Huffmeier U, Uebe S, Steel K, Hebert HL, et al. Dense genotyping of immune-related susceptibility loci reveals new insights into the genetics of psoriatic arthritis. Nat Commun. 2015;6:6046. doi: 10.1038/ncomms7046
  73. Becher B, Tugues S, Greter M. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity. 2016;45(5):963–973. doi: 10.1016/j.immuni.2016.10.026
  74. Komuczki J, Tuzlak S, Friebel E, Hartwig T, Spath S, Rosenstiel P, et al. Fate-mapping of GM-CSF expression identifies a discrete subset of inflammation-driving T helper cells regulated by cytokines IL-23 and IL-1β. Immunity. 2019;50(5):1289–1304.e6. doi: 10.1016/j.immuni.2019.04.006
  75. Myllyharju J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol. 2003;22 (1):15–24. doi: 10.1016/s0945-053x(03)00006-4
  76. Aro E, Khatri R, Gerard-O'Riley R. Hypoxia-inducible factor-1 (HIF-1) but not HIF-2 is essential for hypoxic induction of collagen prolyl 4-hydroxylases in primary newborn mouse epiphyseal growth plate chondrocytes. J Biol Chem. 2012;287(44):37134–37144. doi: 10.1074/jbc.M112.352872
  77. Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL. Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem. 2013;288(15):10819–10829. doi: 10.1074/jbc.M112.442939
  78. Fähling M, Mrowka R, Steege A, Nebrich G, Perlewitz A, Persson PB, et al. Translational control of collagen prolyl 4-hydroxylase-alpha(I) gene expression under hypoxia. J Biol Chem. 2006;281(36):26089–26101. doi: 10.1074/jbc.M604939200
  79. Lanier LL. NK cell recognition. Annu Rev Immunol. 2005;23:225–274. doi: 10.1146/annurev.immunol.23.021704.115526
  80. Chandran V, Bull SB, Pellett FJ, Ayearst R, Pollock RA, Gladman DD. Killer-cell immunoglobulin-like receptor gene polymorphisms and susceptibility to psoriatic arthritis. Rheumatology (Oxford). 2014;53(2):233–239. doi: 10.1093/rheumatology/ket296
  81. Kulkarni S, Martin MP, Carrington M. The Yin and Yang of HLA and KIR in human disease. Semin Immunol. 2008;20(6):343–352. doi: 10.1016/j.smim.2008.06.003
  82. Martin MP, Nelson G, Lee JH, Pellett F, Gao X, Wade J, et al. Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol. 2002;169(6):2818–2822. doi: 10.4049/jimmunol.169.6.2818
  83. Williams F, Meenagh A, Sleator C, Cook D, Fernandez-Vina M, Bowcock AM, et al. Activating killer cell immunoglobulin-like receptor gene KIR2DS1 is associated with psoriatic arthritis. Hum Immunol 2005;66(7):836–841. doi: 10.1016/j.humimm.2005.04.005
  84. Popa OM, Cherciu M, Cherciu LI, Dutescu MI, Bojinca M, Bojinca V, et al. ERAP1 and ERAP2 gene variations influence the risk of psoriatic arthritis in Romanian population. Arch Immunol Ther Exp (Warsz). 2016;64(Suppl 1):123–129. doi: 10.1007/s00005-016-0444-4
  85. Mpakali A, Giastas P, Mathioudakis N, Mavridis IM, Saridakis E, Stratikos E. Structural basis for antigenic peptide recognition and processing by endoplasmic reticulum (ER) aminopeptidase 2. J Biol Chem. 2015;290(43):26021–26032. doi: 10.1074/jbc.M115.685909
  86. Andrés AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin SQ, Hurle B, et al. Balancing selection maintains a form of ERAP2 that undergoes nonsense-mediated decay and affects antigen presentation. PLoS Genet. 2010;6(10):e1001157. doi: 10.1371/journal.pgen.1001157
  87. Wiśniewski A, Matusiak Ł, Szczerkowska-Dobosz A, Nowak I, Łuszczek W, Kuśnierczyk P. The association of ERAP1 and ERAP2 single nucleotide polymorphisms and their haplotypes with psoriasis vulgaris is dependent on the presence or absence of the HLA-C*06:02 allele and age at disease onset. Hum Immunol. 2018;79(2):109–116. doi: 10.1016/j.humimm.2017.11.010
  88. Julià A, Tortosa R, Hernanz JM, Cañete JD, Fonseca E, Ferrándiz C, et al. Risk variants for psoriasisvulgaris in a large case–control collection and association withclinicalsubphenotypes. Hum Mol Genet. 2012;21(20):4549–4557. doi: 10.1093/hmg/dds29
  89. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–585. doi: 10.1038/ng.2653
  90. Togayachi A, Kozono Y, Kuno A, Ohkura T, Sato T, Hirabayashi J, et al. Beta3GnT2 (B3GNT2), a major polylactosaminesynthase: analysis of B3GNT2-deficient mice. Methods Enzymol. 2010;479:185–204. doi: 10.1016/S0076-6879(10)79011-X
  91. Gulati K, Poluri KM. Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconj J. 2016;33(1):1–17. doi: 10.1007/s10719-015-9642-2
  92. Schett G, Coates LC, Ash ZR, Finzel S, Conaghan PG. Structural damage in rheumatoid arthritis,psoriatic arthritis, and ankylosing spondylitis: traditional views, novel insights gainedfrom TNF blockade, and concepts for the future. Arthritis Res Ther. 2011;13(Suppl1):S4. doi: 10.1186/1478-6354-13-S1-S4
  93. Caterson B, Flannery CR, Hughes CE, Little CB. Mechanisms involved in cartilage proteoglycan catabolism. Matrix Biol. 2000;19(4):333–344. doi: 10.1016/s0945-053x(00)00078-0
  94. Arner EC, Hughes CE, Decicco CP, Caterson B, Tortorella MD. Cytokine-induced cartilage proteoglycandegradation is mediated by aggrecanase. Osteoarthritis Cartilage. 1998;6(3):214–228. doi: 10.1053/joca.1998.0114
  95. Sugimoto K, Iizawa T, Harada H, Yamada K, Katsumata M, Takahashi M. Cartilage degradation independent of MMP/aggrecanases. Osteoarthritis Cartilage. 2004;12(12):1006–1014. doi: 10.1016/j.joca.2004.09.003
  96. Togayachi A, Kozono Y, Ishida H, Abe S, Suzuki N, Tsunoda Y, et al. Polylactosamine on glycoproteins influencesbasal levels of lymphocyte and macrophage activation. Proc Natl Acad Sci U S A. 2007;104(40):15829–15834. doi: 10.1073/pnas.0707426104
  97. Budu-Aggrey A, Bowes J, Stuart PE, Zawistowski M, Tsoi LC, Nair R, et al. A rare coding allele in IFIH1 is protective for psoriatic arthritis. Ann Rheum Dis. 2017;76(7):1321–1324. doi: 10.1136/annrheumdis-2016-210592
  98. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA. Rare variants of IFIH1, a geneimplicatedinantiviral responses, protect against type 1 diabetes. Science. 2009;324(5925):387–389. doi: 10.1126/science.1167728
  99. Goubau D, Deddouche S, Reis e Sousa C. Cytosolic sensing of viruses. Immunity. 2013;38 (5):855–869. doi: 10.1016/j.immuni.2013.05.007
  100. Rice GI, Del Toro Duany Y, Jenkinson EM, Forte GM, Anderson BH, Ariaudo G, et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 2014;46(5):503–509. doi: 10.1038/ng.2933
  101. Pollock RA, Abji F, Liang K, Chandran V, Pellett FJ, Virtanen C, et al. Gene expression differences between psoriasis patients with and without inflammatory arthritis. J Invest Dermatol. 2015;135(2):620–623. doi: 10.1038/jid.2014.414
  102. Duan Z, Li FQ, Wechsler J. A novel notch protein, N2N, targeted by neutrophil elastase and implicated in hereditary neutropenia. Mol Cell Biol. 2004;24(1):58–70. doi: 10.1128/MCB.24.1.58-70.2004
  103. Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, et al. The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol. 2008;28(20):6402–6412. doi: 10.1128/MCB.00299-08
  104. Rahmati S, Tsoi L, O'Rielly D, Chandran V, Rahman P. Complexities in genetics of psoriatic arthritis. Curr Rheumatol Rep. 2020;22(4):10. doi: 10.1007/s11926-020-0886-x
  105. Carvalho AL, Hedrich CM. The molecular pathophysiology of psoriatic arthritis — The complex interplay between genetic predisposition, epigenetics factors, and the microbiome. Front Mol Biosci. 2021;8:662047. doi: 10.3389/fmolb.2021.662047
  106. Patrick MT, Stuart PE, Raja K, Gudjonsson JE, Tejasvi T, Yang J, et al. Genetic signature to provide robust risk assessment of psoriatic arthritis development in psoriasis patients. Nat Commun. 2018;9(1):4178. doi: 10.1038/s41467-018-06672-6

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Kubanov A.A., Karamova A.E., Chikin V.V., Verbenko D.A., Znamenskaya L.F., Artamonova O.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».