The genetic determinants of Mycobacterium leprae resistance to antimicrobial drugs
- Authors: Verbenko D.A.1, Solomka V.S.1, Kozlova I.V.1, Kubanov A.A.1
-
Affiliations:
- State Research Center of Dermatovenereology and Cosmetology
- Issue: Vol 97, No 6 (2021)
- Pages: 54-62
- Section: REVIEWS
- URL: https://journals.rcsi.science/0042-4609/article/view/117573
- DOI: https://doi.org/10.25208/vdv1292
- ID: 117573
Cite item
Full Text
Abstract
The review is devoted to the appearance of resistance of a slowly developing disease — leprosy — to antimicrobial therapy (AMP), primarily recommended by the World Health Organization. The main danger of drug resistant leprosy is in the difficulty of identifying, since the causative agent of the disease is not cultivated on artificial media, and the methods for diagnosing drug resistance that are currently used take a long time. The drug resistance of the Mycobacterium leprae strain even to individual components of combination drug therapy result to the development of symptoms of the disease despite undergo anti-leprosy therapy, which in turn can cause the patient to become disabled. Currently, in the Russian Federation, there is no approved test for detecting Mycobacterium leprae DNA, and the determination of genetic determinants of resistance is carried out by sequencing genome regions determined by WHO recommendations: small gyrA, folP and rpoB genes loci. At the same time, modern studies in endemic regions reveal an increased level of Mycobacterium leprae strains resistant to individual components of combined drug therapy. The use of next generation sequencing (NGS) has made it possible to identify additional genetic determinants of leprosy resistance to the components of combination drug therapy. The current situation is relevant to antimicrobal drug resistance surveillance by using of quick identification systems for most frequent genetic resistance determinants of Mycobacterium leprae.
The literature search was carried out using keywords in the Scopus, PubMed and RSCI databases.
Full Text
##article.viewOnOriginalSite##About the authors
Dmitry A. Verbenko
State Research Center of Dermatovenereology and Cosmetology
Author for correspondence.
Email: verbenko@gmail.com
ORCID iD: 0000-0002-1104-7694
SPIN-code: 8261-6561
Cand. Sci. (Biol.)
Russian Federation, Korolenko str., 3, bldg 6, 107076, MoscowVictoria S. Solomka
State Research Center of Dermatovenereology and Cosmetology
Email: solomka@cnikvi.ru
ORCID iD: 0000-0002-6841-8599
SPIN-code: 1486-3284
Dr. Sci. (Biol.)
Russian Federation, Korolenko str., 3, bldg 6, 107076, MoscowIrina V. Kozlova
State Research Center of Dermatovenereology and Cosmetology
Email: ikozlova_work@inbox.ru
ORCID iD: 0000-0002-6328-363X
SPIN-code: 3574-4048
младший научный сотрудник отдела лабораторной диагностики ИППП и дерматозов
Russian Federation, Korolenko str., 3, bldg 6, 107076, MoscowAlexey A. Kubanov
State Research Center of Dermatovenereology and Cosmetology
Email: alex@cnikvi.ru
ORCID iD: 0000-0002-7625-0503
SPIN-code: 8771-4990
MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences
Russian Federation, Korolenko str., 3, bldg 6, 107076, MoscowReferences
- World Health Organization. Towards zero leprosy. Global leprosy (Hansen’s Disease) strategy 2021–2030. 2021. https://www.who.int/publications/i/item/9789290228509 (Accessed at 25 Oct 2021).
- Глобальная стратегия ВОЗ по сдерживанию устойчивости к противомикробным препаратам. [Global'naya strategiya VOZ po sderzhivaniyu ustojchivosti k protivomikrobnym preparatam. (In Russ.)] https://www.who.int/drugresistance/WHO_Global_Strategy_Russian.pdf. (Accessed at 25 Oct 2021).
- Bottery MJ, Pitchford JW, Friman VP. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15(4):939–948. doi: 10.1038/s41396-020-00832-7
- Peterson E, Kaur P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front Microbiol. 2018;9:2928. doi: 10.3389/fmicb.2018.02928
- Benjak A, Avanzi C, Singh P, Loiseau C, Girma S, Busso P, Fontes ANB, et al. Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nat Commun. 2018;9(1):352. doi: 10.1038/s41467-017-02576-z
- Lavania M, Darlong J, Singh I, Ahuja M, Turankar RP, Pathak VK, et al. Analysis of bacteriological Index between fixed multidrug therapy and new WHO recommended alternative regimen with ofloxacin, minocycline and clofazimine of rifampicin resistant cases from the hospitals of The Leprosy Mission, India. J Glob Antimicrob Resist. 2020;23:275–277. doi: 10.1016/j.jgar.2020.09.021
- Chauffour A, Morel F, Reibel F, Petrella S, Mayer C, Cambau E, et al. A systematic review of Mycobacterium leprae DNA gyrase mutations and their impact on fluoroquinolone resistance. Clin Microbiol Infect. 2021;27(11):1601–1612. doi: 10.1016/j.cmi.2021.07.007
- M. Fischer. Leprosy – an overview of clinical features, diagnosis, and treatment. J Dtsch Dermatol Ges. 2017;15(8):801–827. doi: 10.1111/ddg.13301
- Образцова О.А., Вербенко Д.А., Карамова А.Э., Семенова В.Г., Кубанов А.А., Дерябин Д.Г. Совершенствование ПЦР-диагностики лепры путем амплификации видоспецифичного повторяющегося фрагмента генома Mycobacterium leprae. Клиническая лабораторная диагностика, 2018;63(8):511–516. [Obrazcova OA, Verbenko DA, Karamova AE, Semyonova VG, Kubanov AA, Deryabin DG. Sovershenstvovanie PCR-diagnostiki lepry putem amplifikacii vidospecifichnogo povtoryayushchegosya fragmenta genoma Mycobacterium leprae. Klinicheskaya laboratornaya diagnostika, 2018;63(8):511–516 (In Russ.)] doi: 10.18821/0869-2084-2018-63-8-511-516
- Кубанов А.А., Карамова А.Э., Семенова В.Г., Смольянникова В.А., Нефедова М.А. Рецидив лепры, развившийся после прекращения противолепрозной терапии. Вестник дерматологии и венерологии, 2016;6:66–72. [Kubanov AA, Karamova AE, Semenova VG, Smol'yannikova VA, Nefedova MA. Recidiv lepry, razvivshijsya posle prekrashcheniya protivoleproznoj terapii. Vestnik dermatologii i venerologii, 2016;6:66–72 (In Russ.)] doi: 10.25208/0042-4609-2016-0-6-3-18
- Семенова В.Г., Карамова А.Э., Нефедова М.А. Лепра под «маской» туберкулеза кожи — трудности диагностики. Вестник дерматологии и венерологии, 2017;(6):91–99. [Semyonova VG, Karamova AE, Nefyodova MA. Leprosy in the Guise of Skin Tuberculosis — Com-plexities of Diagnostics. Vestnik Dermatologii i Venerologii. 2017;(6):91–99 (In Russ.)]
- Shepard CC. Growth characteristics of Mycobacterium leprae. Acta Leprol. 1984;2(2-4):277–279.
- Maymone MBC, Venkatesh S, Laughter M, Abdat R, Hugh J, Dacso MM, et al. Leprosy: Treatment and management of complications. J Am Acad Dermatol. 2020;83(1):17–30. doi: 10.1016/j.jaad.2019.10.138
- Fonseca AB, Simon MD, Cazzaniga RA, de Moura TR, de Almeida RP, Duthie MS, et al. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty. 2017;6(1):5. doi: 10.1186/s40249-016-0229-3.
- Ridley DS, Jopling WH. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966;34(3):255–273.
- Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, et al. Massive gene decay in the leprosy bacillus. Nature. 2001;22;409(6823):1007-1011.
- Shepard CC. The experimental disease that follows the injection of human leprosy bacilli into foot-pads of mice. J Exp Med. 1960;112(3):445–454. doi: 10.1084/jem.112.3.445
- Tortoli E, Fedrizzi T, Meehan CJ, Trovato A, Grottola A, Giacobazzi E, et al. The new phylogeny of the genus Mycobacterium: The old and the news. Infect Genet Evol. 2017;56:19–25. doi: 10.1016/j.meegid.2017.10.013
- George J. Metabolism and interactions of antileprosy drugs. Biochem Pharmacol. 2020;177:113993. doi: 10.1016/j.bcp.2020.113993
- Bennett BH, Parker DL, Robson M. Leprosy: steps along the journey of eradication. Public Health Rep. 2008;123(2):198–205. doi: 10.1177/003335490812300212.
- Ghaoui N, Hanna E, Abbas O, Kibbi AG, Kurban M. Update on the use of dapsone in dermatology. Int J Dermatol. 2020;59(7):787–795. doi: 10.1111/ijd.14761
- Maladan Y, Krismawati H, Hutapea HML, Oktavian A, Fatimah R, Widodo. A new Mycobacterium leprae dihydropteroate synthase variant (V39I) from Papua, Indonesia. Heliyon. 2019;5(3):e01279. doi: 10.1016/j.heliyon.2019.e01279
- Swain SS, Paidesetty SK, Dehury B, Das M, Vedithi SC, Padhy RN. Computer-aided synthesis of dapsone-phytochemical conjugates against dapsone-resistant Mycobacterium leprae. Sci Rep. 2020;10(1):6839. doi: 10.1038/s41598-020-63913-9
- Holdiness MR. Clinical pharmacokinetics of clofazimine: a review. Clin. Pharmacokinet. 1989,19:74–85.
- Можокина Г.Н., Самойлова А.Г. Клофазимин: история и перспективы. Туберкулез и болезни легких. 2021;99(5):64–70 [Mozhokina GN, Samoylova АG. Clofazimine: history and perspectives. Tuberculosis and Lung Diseases, 2021;99(5):64–70 (In Russ.)]
- Кубанов А.А., Карамова А.Э., Воронцова А.А., Калинина П.А. Фармакотерапия лепры. Вестник дерматологии и венерологии 2016;92(4):12–19. [Kubanov AA, Karamova AE, Voroncova AA, Kalinina PA. Farmakoterapiya lepry. Vestnik dermatologii i venerologii 2016;92(4):12–19 (In Russ.)] doi: 10.25208/0042-4609-2016-92-4-12-19
- The National Hansen’s Disease (Leprosy) Program. https://www.hrsa.gov/hansens-disease/index.html#:~:text=The%20National%20Hansen's%20Disease%20Program,and%20makes%20referrals%20for%20treatment. (Accessed at 25 Oct 2021).
- Lazo-Porras M, Prutsky GJ, Barrionuevo P, Tapia JC, Ugarti-Gil C, Ponce OJ. et al. World Health Organization (WHO) antibiotic regimen against other regimens for the treatment of leprosy: a systematic review and meta-analysis. BMC Infect Dis. 2020;20(1):62. doi: 10.1186/s12879-019-4665-0
- Maeda S, Matsuoka M, Nakata N, Kai M, Maeda Y, Hashimoto K, et al. Resistant Mycobacterium leprae from Patients with Leprosy. Antimicrob Agents Chemother. 2001;45(12):3635–3639. doi: 10.1128/AAC.45.12.3635-3639.2001
- A guide for surveillance of antimicrobial resistance in leprosy: 2017 update. New Delhi: World Health Organization, Regional Office for South-East Asia; 2017.
- Cambau E, Saunderson P, Matsuoka M, Cole ST, Kay M, Suffys P, et al. Antimicrobial resistance in leprosy: results of the first prospective open survey conducted by a WHO surveillance network for the period 2009-15. Clin Microbiol Infect. 2018;24(12):1305–1310. doi: 10.1016/j.cmi.2018.02.022
- Cambau E, Chauffour-Nevejans A, Tejmar-Kolar L, Matsuoka M, Jarlier V. Detection of antibiotic resistance in leprosy using GenoType LepraeDR, a novel ready-to-use molecular test. PLoS Negl Trop Dis. 2012;6(7):e1739. doi: 10.1371/journal.pntd.0001739
- Williams DL, Araujo S, Stryjewska BM, Scollard D. Dapsone Resistance in Leprosy Patients Originally from American Samoa, United States, 2010–2012. Emerg Infect Dis. 2018;24(8):1584–1585. doi: 10.3201/eid2408.180033
- Chokkakula S, Chen Z, Wang L, Jiang H, Chen Y, Shi Y, et al. Molecular surveillance of antimicrobial resistance and transmission pattern of Mycobacterium leprae in Chinese leprosy patients. Emerg Microbes Infect. 2019;8(1):1479–1489. doi: 10.1080/22221751.2019.1677177
Supplementary files
