Treatment of сongenital melanocytic nevus in infants and children by a dual-wavelengths copper vapor laser

Cover Page

Cite item

Full Text

Abstract

Introduction. Congenital melanocytic nevus (CMN) is detected at birth or shortly after birth in 1% of infants. The localization of CMN in aesthetically significant areas causes a decline in child self-esteem and causes concern for his parents. Surgical excision of skin areas with CMN is associated with an increased risk of cosmetic side effects and is often followed by long-term stress conditions after the invasive intervention.

Aim of the study. To evaluate the efficacy of the CMN removal in infants, children and adolescents with the dual-wavelengths copper vapor laser (CVL) radiation.

Patients and Methods. Medium-sized (up to 9 cm) single CMN was treated in nine fair-skinned patients: seven girls and two boys, aged from 2 months to 16 years. The procedures were carried out at an average CVL power of 0.6—1.0 W, with a power ratio of 3:2 at 511 nm and 578 nm wavelengths, and an exposure time of 0.2—0.3 s. Light spot diameter — 1 mm. The treatment was carried out during 2—10 sessions with an interval of 1—2 months between sessions.

Results. In children and adolescents, the treatment of CMN with CVL dual-wavelengths radiation made it possible to achieve significant clarification of the involved area without hypertrophic scars. The duration of the healing of the irradiated area lasted 2—3 weeks. Side effects were manifested with subtle skin atrophy.

Conclusion. The high efficacy of CVL removal of medium-sized CMN in infants and children using the dual-wavelengths CVL radiation without pronounced side effects allows introducing such an approach in the clinical practice of pediatric dermatologists and cosmetologists.

About the authors

Igor V. Ponomarev

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Author for correspondence.
Email: iponom@okb.lpi.troitsk.ru

Cand. Sci. (Phys.-Math.), Project manager, P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Russian Federation, Leninskiy pr., 53, Moscow

Sergei B. Topchy

P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: iponom@okb.lpi.troitsk.ru

Cand. Sci. (Phys.-Math.), Senior Researcher, P.N. Lebedev Physical Institute of the Russian Academy of Sciences

Russian Federation, Leninskiy pr., 53, Moscow

Alexandra E. Pushkareva

ITMO University

Email: alexandra.pushkareva@gmail.com

Cand. Sci. (Engineering), Tutor, Department of Laser Technologies and Systems, Saint Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University)

Russian Federation, Kronverkskiy pr., 49, St. Petersburg

Yury N. Andrusenko

Medical Center “Health Institute”

Email: ure.doc@rambler.ru

Cand. Sci. (Tech.), Clinic of Aesthetic Medicine. Head of the Laser department of the Health Institute

Ukraine, Constitution sq., 26, Kharkiv

Ludmila D. Shakina

National Medical Research Center of Children's Health

Email: shakina@nczd.ru
ORCID iD: 0000-0002-3811-4367

MD, Ph.D., DSci, chief expert, National Medical Research Center of Children Health

Russian Federation, Lomonosovskiy pr., 2, Moscow

References

  1. Sandsmark M., Eskeland G., Ogaard A.R., Abyholm F., Clausen O.P. Treatment of large congenital naevi. A review and report of six cases. Scand J Plast Reconstr Surg Hand Surg. 1993; 27 (3): 223—232. doi: 10.3109/02844319309078115.
  2. Reyes-Mugica M., Alvarez-Franco M., Bauer B.S., Vicari F.A. Nevus cells and special nevomelanocytic lesions in children. Pediatr Pathol. 1994; 14 (6): 1029—1041. doi: 10.3109/15513819409037699.
  3. Bray F.N., Shah V., Nouri K. Laser treatment of congenital melanocytic nevi: a review of the literature. Lasers Med Sci. 2016; 31 (1): 197—204. doi: 10.1007/s10103-015-1833-3.
  4. Bateman T., Willan R. Delineations of cutaneous diseases: exhibiting the characteristic appearances of the principal genera and species comprised in the classification of the late Dr. Willan and completing the series of engravings begun by that author. Longman, Hurst, Rees, Orme, and Brown, 1817.
  5. Alibert J.L.M. Monographie des dermatoses ou précis théoretique et pratique des maladies de la peau, vol II: Naeve–Naevus // Daynac, Paris. 1832. С. 729—736.
  6. Price H.N., Schaffer J.V. Congenital melanocytic nevi-when to worry and how to treat: Facts and controversies. Clin Dermatol. 2010; 28 (3): 293—302. doi: 10.1016/j.clindermatol.2010.04.004.
  7. Damsky W.E., Bosenberg M. Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene. 2017; 36 (42): 5771—5792. doi: 10.1038/onc.2017.189.
  8. Sakai H., Ando Y., Ikinaga K., Tanaka M. Estimating melanin location in the pigmented skin lesions by hue-saturation-lightness color space values of dermoscopic images. J Dermatol. 2017; 44 (5): 490—498. doi: 10.1111/1346-8138.13725.
  9. Молочков В.А., Махнева Н.В., Белова И.И., Сухова Т.Е. Гигантский врожденный меланоцитарный невус. Российский журнал кожных и венерических болезней. 2005; 2: 4—7. [Molochkov V.A., Makhneva N.V., Belova I.I., Sukhova T.E. Giant congenital melanocytic nevus. Russian journal of skin and venereal diseases (Rossiyskiy zhurnal kozhnykh i venericheskikh bolezney). 2005; 2: 4—7 (Russia).]
  10. Sardana K., Chakravarty P., Goel K. Optimal management of common acquired melanocytic nevi (moles): current perspectives. Clin Cosmet Investig Dermatol. 2014; 7: 89—103. Published 2014 Mar 19. doi: 10.2147/CCID.S57782.
  11. Krengel S., Scope A., Dusza S.W., Vonthein R., Marghoob A.A. New recommendations for the categorization of cutaneous features of congenital melanocytic nevi. J Am Acad Dermatol. 2013; 68 (3): 441—451. doi: 10.1016/j.jaad.2012.05.043.
  12. Magaña M., Sánchez-Romero E., Magaña P., Beck-Magaña A., Magaña-Lozano M. Congenital melanocytic nevus: two clinicopathological forms. Am J Dermatopathol. 2015; 37 (1): 31—37. doi: 10.1097/DAD.0000000000000183.
  13. McLaughlin M.R., O'Connor N.R., Ham P. Newborn skin: Part II. Birthmarks. Am Fam Physician. 2008; 77 (1): 56—60.
  14. Turkmen A., Isik D., Bekerecioglu M. Comparison of classification systems for congenital melanocytic nevi. Dermatol Surg. 2010; 36 (10): 1554—1562. doi: 10.1111/j.1524-4725.2010.01641.x.
  15. Fahradyan A., Wolfswinkel E.M., Tsuha M. et al. Cosmetically Challenging Congenital Melanocytic Nevi. Ann Plast Surg. 2019; 82 (5S Suppl 4): S306‐S309. doi: 10.1097/SAP.0000000000001766.
  16. Усольцева А.С., Степанова Ю.В., Красногорский И.Н. & Цыплакова М.С. Большие и гигантские меланоцитарные невусы челюстно-лицевой области у детей. Особенности морфологического строения и хирургического лечения. Ортопедия, травматология и восстановительная хирургия детского возраста, 2015; 3 (4): 22—28. [Usoltseva A.S., Stepanova Y.V., Krasnogorskiy I.N., Tsyplakova M.S. Large and Giant Melanocytic Nevi of the Maxillofacial Area in Children: Features of the Morphological Structure and Surgical Treatment (Russia).]
  17. Zaal L.H., Mooi W.J., Sillevis Smitt J.H., van der Horst C.M. Classification of congenital melanocytic naevi and malignant transformation: a review of the literature. Br J Plast Surg. 2004; 57 (8): 707—719. doi: 10.1016/j.bjps.2004.04.022.
  18. Damsky W.E., Bosenberg M. Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene. 2017; 36 (42): 5771—5792. doi: 10.1038/onc.2017.189.
  19. Basu D., Salgado C.M., Patel J.R. et al. Pluripotency markers are differentially induced by IGF1 and bFGF in cells from patients' lesions of large/giant congenital melanocytic nevi. Biomark Res. 2019; 7: 2. Published 2019 Jan 14. doi: 10.1186/s40364-018-0152-9.
  20. Charbel C., Fontaine R.H., Kadlub N. et al. Clonogenic cell subpopulations maintain congenital melanocytic nevi. J Invest Dermatol. 2015; 135 (3): 824—833. doi: 10.1038/jid.2014.437.
  21. Guégan S., Kadlub N., Picard A. et al. Varying proliferative and clonogenic potential in NRAS-mutated congenital melanocytic nevi according to size. Exp Dermatol. 2016; 25 (10): 789—796. doi: 10.1111/exd.13073.
  22. Bray F.N., Shah V., Nouri K. Laser treatment of congenital melanocytic nevi: a review of the literature. Lasers Med Sci. 2016; 31 (1): 197—204. doi: 10.1007/s10103-015-1833-3.
  23. Helsing P., Mørk G., Sveen B. Ruby laser treatment of congenital melanocytic naevi--a pessimistic view. Acta Derm Venereol. 2006; 86 (3): 235—237. doi: 10.2340/00015555-0041.
  24. Lee M.S., Jun H.J., Cho S.H., Lee J.D., Kim H.S. Intense Pulsed Light Alone and in Combination with Erbium Yttrium-Aluminum-Garnet Laser on Small-to-Medium Sized Congenital Melanocytic Nevi: Single Center Experience Based on Retrospective Chart Review. Ann Dermatol. 2017; 29 (1): 39—47. doi: 10.5021/ad.2017.29.1.39.
  25. Al-Hadithy N., Al-Nakib K., Quaba A. Outcomes of 52 patients with congenital melanocytic naevi treated with UltraPulse Carbon Dioxide and Frequency Doubled Q-Switched Nd-Yag laser. J Plast Reconstr Aesthet Surg. 2012; 65 (8): 1019—1028. doi: 10.1016/j.bjps.2012.03.003.
  26. Grevelink J.M., van Leeuwen R.L., Anderson R.R., Byers H.R. Clinical and histological responses of congenital melanocytic nevi after single treatment with Q-switched lasers. Arch Dermatol. 1997; 133 (3): 349—353.
  27. Funayama E., Yamamoto Y., Oyama A. et al. Combination laser therapy as a non-surgical method for treating congenital melanocytic nevi from cosmetically sensitive locations on the body. Lasers Med Sci. 2019; 34 (9): 1925—1928. doi: 10.1007/s10103-019-02753-0.
  28. Sherwood K.A., Murray S., Kurban A.K., Tan O.T. Effect of wavelength on cutaneous pigment using pulsed irradiation. J Invest Dermatol. 1989; 92 (5): 717—720. doi: 10.1111/1523-1747.ep12721505.
  29. Somyos K., Boonchu K., Somsak K., Panadda L., Leopairut J. Copper vapour laser treatment of café-au-lait macules. Br J Dermatol. 1996; 135 (6): 964—968. doi: 10.1046/j.1365-2133.1996.d01-1103.x.
  30. Ключарева С.В., Пономарев И.В., Топчий С.Б., Пушкарева А.Е., Андрусенко Ю.Н. Лечение себорейного кератоза лазером на парах меди. Вестник дерматологии и венерологии. 2019; 95 (3): 25—33. https://doi.org/10.25208/0042-4609-2019-95-3-25-33 [Klyuchareva S.V., Ponomarev I.V., Topchiy S.B., Pushkareva A.E., Andrusenko Yu.N. Treatment of seborrheic keratosis with a copper vapour laser. Vestnik Dermatologii i Venerologii. 2019; 95 (3): 25—33 (Russia).]
  31. Lee H.I., Lim Y.Y., Kim B.J. et al. Clinicopathologic efficacy of copper bromide plus/yellow laser (578 nm with 511 nm) for treatment of melasma in Asian patients. Dermatol Surg. 2010; 36 (6): 885—893. doi: 10.1111/j.1524-4725.2010.01564.x.
  32. Ulrich M., Themstrup L., de Carvalho N. et al. Dynamic Optical Coherence Tomography in Dermatology. Dermatology. 2016; 232 (3): 298—311. doi: 10.1159/000444706.
  33. Regazzetti C., De Donatis G.M., Ghorbel H.H. et al. Endothelial Cells Promote Pigmentation through Endothelin Receptor B Activation. J Invest Dermatol. 2015; 135 (12): 3096—3104. doi: 10.1038/jid.2015.332.
  34. Ключарева С.В., Пономарев И.В., Пушкарева А.Е. Лечение сосудистых мальформаций кожи с применением лазеров на парах меди и импульсного лазера на красителе. Вестник дерматологии и венерологии. 2018; 94 (1): 65—75. doi: 10.25208/0042-4609-2018-94-1-65-75. [Klyuchareva S.V., Ponomarev I.V., Pushkareva A.E. Therapy of Skin Vascular Malformations Using Copper Vapor Laser and Pulsed Dye Laser. Vestnik Dermatologii i Venerologii. 2018; 94 (1): 65—75 (Russia).]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Congenital melanocytic nevus type I in a girl (age-2 months) on the skin of the cheek sized of 18 × 25 mm, M1S0C1R0N0H0: (a) before treatment, (b) after 9 sessions of the laser treatment y at the age of 1.5 years, and (b) following the long-term period after treatment (5 years) (patient # 1, table 2)

Download (138KB)
3. Fig. 2. CMN Type I sized of 90 × 50 mm in the left frontotemporal area, M1S0C1R2N0H2 in a 5-year-old boy: (a) before treatment, (b) after a test sample, and (с, d) three years after the treatment (10 procedures were performed at 2—4 month intervals) (patient # 2, table 2)

Download (336KB)
4. Fig. 3. CMN Type I sized of 30 × 14 mm in the left nasal area, M1S1C1R1N0H1 in a 5-year-old boy: (a) before treatment, (b) after 1,5 years after the treatment (7 procedures were performed at 2 months intervals) (patient # 4, table 2)

Download (139KB)
5. Fig. 4. CMN Type I sized of 90 × 35 mm in the Anterior lateral surface of the lower third of the right shin, M1S0C1R0N0H1 in a 16-year-old girl: (a) before treatment, (b) after 1 year after the treatment (5 procedures were performed at 2 months intervals) (patient # 9, table 2)

Download (146KB)
6. Fig. 5. CMN Type I sized of 7 × 9 mm in the anterior surface of the upper third of the left thigh, M1S0C0R0N0H0 in a 4-year-old: (a) before treatment, (b) after 1 year after the treatment (6 procedures were performed at 2 months intervals) (patient # 8, table 2)

Download (100KB)

Copyright (c) 2020 Ponomarev I.V., Topchy S.B., Pushkareva A.E., Andrusenko Y.N., Shakina L.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».