The Reconstructed Human Epidermis in vitro — a Model for Basic and Applied Research of Human Skin
- Authors: Beilin A.K.1,2, Rippa A.L.1, Sharobaro V.I.2, Gurskaya N.G.2,1, Vorotelyak E.A.1
-
Affiliations:
- Koltzov Institute of Development Biology of Russian Academy of Sciences
- Pirogov Medical University
- Issue: Vol 96, No 2 (2020)
- Pages: 24-34
- Section: ORIGINAL STUDIES
- URL: https://journals.rcsi.science/0042-4609/article/view/117495
- DOI: https://doi.org/10.25208/vdv1107
- ID: 117495
Cite item
Full Text
Abstract
Background. The reconstructed human epidermis (RE) is an in vitro tissue-engineering construct similar to the native epidermis.
Objective. To develop a full-layer RE. Describe its structure: determine the presence of all layers of the epidermal component, including basal, spinous and granular layers and stratum corneum of the epidermis; detect the basement membrane, the border between the epidermal and mesenchymal component.
Materials and methods. Isolation of keratinocytes and fibroblasts from human donor skin. Cultivation of keratinocytes and fibroblasts in vitro under 2D conditions, cell subculturing and 3D modeling of RE, obtaining cryosections, histological staining, immunohistochemical (IHC) study with antibodies to cytokeratins 14 and 10, Ki67 protein, loricrin, laminin 5 and plectin.
Results. A technique was developed for the formation of RE. Histological examination showed that the stratification of keratinocyte layers occurs during the formation of RE. Layers are formed including basal, spinous and granular layers and stratum corneum. The IHC study has shown the proliferative activity of keratinocytes of the basal layer and has detected the presence of marker proteins of keratinocytes at different stages of differentiation. RE basal keratinocytes, like native ones, form hemidesmosomes and synthesize basement membrane proteins.
Conclusions. A full-layer human RE was obtained in vitro. RE meets all the characteristics of the native epidermis and it is suitable for basic and practical research in the field of skin biology, dermatology, and cosmetology.
Full Text
##article.viewOnOriginalSite##About the authors
Arkadii K. Beilin
Koltzov Institute of Development Biology of Russian Academy of Sciences; Pirogov Medical University
Email: arkadii.beilin@gmail.com
ORCID iD: 0000-0001-9868-5623
Ph.D-student of Laboratory of Cell Biologyy; Junior scientific researcher of the Institute of Translational Medicine
Russian Federation, MoscowAlexandra L. Rippa
Koltzov Institute of Development Biology of Russian Academy of Sciences
Email: rippa86@yandex.ru
ORCID iD: 0000-0001-7300-8466
ResearcherId: I-2103-2014
Ph.D (Biol.), scientific researcher of Laboratory of Cell Biology
Russian Federation, MoscowValentin I. Sharobaro
Pirogov Medical University
Email: sharobarovi@mail.ru
Dr. Sci. (Med.), Prof., Professor of the Russian Academy of Sciences, Professor, Department of Plastic&Reconstructive Surgery, Cosmetology and Cell Technologies
Russian Federation, MoscowNadejda G. Gurskaya
Pirogov Medical University; Koltzov Institute of Development Biology of Russian Academy of Sciences
Email: ngurskaya@mail.ru
Ph.D (Biol.), senior scientific researcher of the Institute of Translational Medicine; scientific researcher of Laboratory of Cell Biology
Russian Federation, MoscowEkaterina A. Vorotelyak
Koltzov Institute of Development Biology of Russian Academy of Sciences
Author for correspondence.
Email: vorotelyak@yandex.ru
Dr. Sci. (Biol.), Prof., Corresponding Member of the Russian Academy of Sciences, Head of Laboratory of Cell Biology
Russian Federation, MoscowReferences
- Vorotelyak E.A., Tsitrin E.B., Vasiliev A.V., Terskikh V.V. Cultured human keratinocytes retaining label for a long time. Dokl Biol Sci. 2005; 402:221-223. doi: 10.1007/s10630-005-0094-x.
- Chermnykh E.S., Vorotelyak E.A., Tkachenko S.B., Vasiliev A.V., Terskikh V.V. Proliferation of K19+ human epidermal keratinocytes in vitro. Dokl Biol Sci. 2007; 416: 406—408. doi: 10.1134/s0012496607050250.
- Blanpain C., Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol. 2009; 10 (3): 207—217. doi: 10.1038/nrm2636.
- Воротеляк Е.А., Терских В.В. Стволовые клетки эпителиальных тканей. Биология стволовых клеток и клеточные технологии. 2009; 2: 53—74. ISBN 5-225-03377-6. [Vorotelyak E.A., Terskikh V.V. Stem cells of epithelial tissues. Stem cell biology and cell technology. 2009; 2: 53—74.]
- Chermnykh E.S., Vorotelyak E.A., Gnedeva K.Y. et al. Dermal papilla cells induce keratinocyte tubulogenesis in culture. Histochem Cell Biol. 2010; 133 (5): 567—576. doi: 10.1007/s00418-010-0691-0.
- Terskikh V.V., Vasiliev A.V., Vorotelyak E.A. Label retaining cells and cutaneous stem cells. Stem Cell Rev Rep. 2012; 8 (2): 414—425. doi: 10.1007/s12015-011-9299-6.
- Vorotelyak E., Terskikh V., Vasiliev A.V. Epithelial-to-mesenchymal transition in epidermal keratinocytes. Keratinocytes: Structure, Molecular Mechanisms and Role in Immunity. January 2013; 69—107.
- Takeo M., Lee W., Ito M. Wound healing and skin regeneration. Cold Spring Harb Perspect Med. 2015; 5 (1): a023267. doi: 10.1101/cshperspect.a023267.
- Kalabusheva E.P., Chermnykh E.S., Terskikh V.V., Vorotelyak E.A. Hair Follicle Reconstruction and Stem Cells. Hair and Scalp Disorders. 2017. doi: 10.5772/66707.
- Rognoni E., Watt F.M. Skin Cell Heterogeneity in Development, Wound Healing, and Cancer. Trends Cell Biol. 2018; 28 (9): 709—722. doi: 10.1016/j.tcb.2018.05.002.
- Potten C.S. The epidermal proliferative unit: the possible role of the central basal cell. Cell Tissue Kinet. 1974; 7 (1): 77—88. doi: 10.1111/j.1365-2184.1974.tb00401.x.
- Slack J.M. Stem cells in epithelial tissues. Science. 2000; 287 (5457): 1431—1433. doi: 10.1126/science.287.5457.1431.
- Терских В.В., Васильев А.В., Воротеляк Е.А. Структурно-функциональные единицы эпидермиса. Известия РАН. Сер. Биол. 2003; 6: 645—649. [Terskikh V.V., Vasiliev A.V., Vorotelyak E.A. Structural-Functional Units of Epidermis. Biol. Bull. 2003; 30 (6): 535—539 (Russia).]
- Kulukian A., Fuchs E. Spindle orientation and epidermal morphogenesis. Philos Trans R Soc Lond B Biol Sci. 2013; 368 (1629): 20130016. doi: 10.1098/rstb.2013.0016.
- Schindelin J., Arganda-Carreras I., Frise E. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9 (7): 676—682. doi: 10.1038/nmeth.2019.
- Ando M., Kawashima T., Kobayashi H., Ohkawar A. Immunohistological Detection of Proliferating Cells in Normal and Psoriatic Epidermis Using Ki-67 Monoclonal Antibody. J Dermatol Sci. 1990; 1 (6): 441—446. doi: 10.1016/0923-1811(90)90014-5.
- Watt F.M. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 2002; 21 (15): 3919—26. doi: 10.1093/emboj/cdf399.
- Fuchs E., Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet. 2002; 3 (3): 199—209. doi: 10.1038/nrg758.
- Риппа А.Л., Воротеляк Е.А., Васильев А.В., Терских В.В. Роль интегринов в формировании и гомеостазе эпидермиса и придатков кожи. Acta Naturae. 2013; 5 (4 (19)): 24—36. [Rippa A.L., Vorotelyak E.A., Vasiliev A.V., Terskikh V.V.THE ROLE OF INTEGRINS IN THE DEVELOPMENT AND HOMEOSTASIS OF THE EPIDERMIS AND SKIN APPENDAGES. Acta Naturae 2013. Т. 5. № 4. С. 22—33.]
- Vig K., Chaudhari A., Tripathi S., et al. Advances in Skin Regeneration Using Tissue Engineering. Int J Mol Sci. 2017; 18 (4). doi: 10.3390/ijms18040789.
- Pedrosa T. do N., Catarino C.M., Pennacchi P.C. et al. A new reconstructed human epidermis for in vitro skin irritation testing. Toxicol In Vitro. 2017; 42: 31—37. doi: 10.1016/j.tiv.2017.03.010.
- Kallis P.J., Friedman A.J., Lev-Tov H. A Guide to Tissue-Engineered Skin Substitutes. J Drugs Dermatol. 2018; 17 (1): 57—64.
- Rippa A.L., Kalabusheva E.P., Vorotelyak E.A. Regeneration of Dermis: Scarring and Cells Involved. Cells. 2019; 8 (6). doi: 10.3390/cells8060607.
- Chermnykh E., Kalabusheva E., Vorotelyak E. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate. Int J Mol Sci. 2018; 19 (4). doi: 10.3390/ijms19041003.
- Алпеева Е.В., Сидоренкова А.Ф., Воротеляк Е.А. Экспериментальные клеточные системы: от органов в чашке Петри до «органов-на-чипах». Вестник Московского ун-та. Серия 16. Биология. 2017. [Alpeeva E.V., Sidorenkova A.F., Vorotelyak E.A. OVERVIEW OF CELL MODELS: FROM ORGANS CULTURED IN A PETRI DISH TO “ORGANS-ON-CHIPS”. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017;72(4):187—198]
- Di W.-L., Larcher F., Semenova E., et al. Ex-vivo gene therapy restores LEKTI activity and corrects the architecture of Netherton syndrome-derived skin grafts. Mol Ther. 2011; 19 (2): 408—416. doi: 10.1038/mt.2010.201.
- Takashima S., Shinkuma S., Fujita Y., et al. Efficient Gene Reframing Therapy for Recessive Dystrophic Epidermolysis Bullosa with CRISPR/Cas9. J Invest Dermatol. 2019; 139 (8): 1711—1721. e4. doi: 10.1016/j.jid.2019.02.015.
- March O.P., Lettner T., Klausegger A., et al. Gene Editing-Mediated Disruption of Epidermolytic Ichthyosis-Associated KRT10 Alleles Restores Filament Stability in Keratinocytes. J Invest Dermatol. 2019; 139 (8): 1699—1710. e6. doi: 10.1016/j.jid.2019.03.1146.
- Woodley D.T., Keene D.R., Atha T., et al. Injection of recombinant human type VII collagen restores collagen function in dystrophic epidermolysis bullosa. Nat Med. 2004; 10 (7): 693—695. doi: 10.1038/nm1063.
- Gómez-Grau M., Garrido E., Cozar M. et al. Evaluation of Aminoglycoside and Non-Aminoglycoside Compounds for Stop-Codon Readthrough Therapy in Four Lysosomal Storage Diseases. PLoS One. 2015; 10 (8). doi: 10.1371/journal.pone.0135873.
- Matalonga L., Arias Á., Tort F. et al. Effect of Readthrough Treatment in Fibroblasts of Patients Affected by Lysosomal Diseases Caused by Premature Termination Codons. Neurotherapeutics. 2015; 12 (4): 874—886. doi: 10.1007/s13311-015-0368-4.
- Woodley D.T., Cogan J., Hou Y. et al. Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients. J Clin Invest. 2017; 127 (8): 3028—3038. doi: 10.1172/JCI92707.
- Lincoln V., Cogan J., Hou Y. et al. Gentamicin induces LAMB3 nonsense mutation readthrough and restores functional laminin 332 in junctional epidermolysis bullosa. Proc Natl Acad Sci USA. 2018; 115 (28): E6536—E6545. doi: 10.1073/pnas.1803154115.
- Yuki T., Tobiishi M., Kusaka-Kikushima A., Ota Y., Tokura Y. Impaired Tight Junctions in Atopic Dermatitis Skin and in a Skin-Equivalent Model Treated with Interleukin-17. PLoS ONE. 2016; 11 (9): e0161759. doi: 10.1371/journal.pone.0161759.
- Barker C.L., McHale M.T., Gillies A.K. et al. The development and characterization of an in vitro model of psoriasis. J Invest Dermatol. 2004; 123 (5): 892—901. doi: 10.1111/j.0022-202X.2004.23435.x.
- Jung J.P., Lin W.-H., Riddle M.J., Tolar J., Ogle B.M. A 3D in vitro model of the dermoepidermal junction amenable to mechanical testing. J Biomed Mater Res A. 2018; 106 (12): 3231—3238. doi: 10.1002/jbm.a.36519.
- Swope V.B., Supp A.P., Schwemberger S., Babcock G., Boyce S. Increased expression of integrins and decreased apoptosis correlate with increased melanocyte retention in cultured skin substitutes. Pigment Cell Res. 2006; 19 (5): 424—433. doi: 10.1111/j.1600-0749.2006.00325.x.
- Nissan X., Larribere L., Saidani M., et al. Functional melanocytes derived from human pluripotent stem cells engraft into pluristratified epidermis. Proc Natl Acad Sci USA. 2011; 108 (36): 14861—14866. doi: 10.1073/pnas.1019070108.
- Facy V., Flouret V., Régnier M., Schmidt R. Reactivity of Langerhans cells in human reconstructed epidermis to known allergens and UV radiation. Toxicol In Vitro. 2005; 19 (6): 787—795. doi: 10.1016/j.tiv.2005.03.018.
- Meier F., Nesbit M., Hsu M.Y., et al. Human melanoma progression in skin reconstructs : biological significance of bFGF. Am J Pathol. 2000; 156 (1): 193—200. doi: 10.1016/S0002-9440(10)64719-0.
- Kiesewetter L., Littau L., Walles H., Boccaccini A.R., Groeber-Becker F. Reepithelialization in focus: Non-invasive monitoring of epidermal wound healing in vitro. Biosens Bioelectron. 2019; 142:111555. doi: 10.1016/j.bios.2019.111555.
- Netzlaff F., Lehr C.-M., Wertz P.W., Schaefer U.F. The human epidermis models EpiSkin, SkinEthic and EpiDerm: an evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur J Pharm Biopharm. 2005; 60 (2): 167—178. doi: 10.1016/j.ejpb.2005.03.004.
- Chakrabarty K.H., Heaton M., Dalley A.J., et al. Keratinocyte-driven contraction of reconstructed human skin. Wound Repair Regen. 2001; 9 (2): 95—106. doi: 10.1046/j.1524-475x.2001.00095.x.
- Portes P., Pygmalion M.J., Popovic E., Cottin M., Mariani M. Use of human reconstituted epidermis Episkin for assessment of weak phototoxic potential of chemical compounds. Photodermatol Photoimmunol Photomed. 2002; 18 (2): 96—102. doi: 10.1034/j.1600-0781.2002.180207.x.
- Чаплин А.В., Ребриков Д.В., Болдырева М.Н. Микробиом Человека. Вестник Росс. гос. мед. ун-та. 2017; (2): 5—13. [Chaplin AV, Rebrikov DV, Boldyreva MN. The human microbiome. Bulletin of RSMU. 2017; (2): 5–13. doi: 10.24075/brsmu.2017-02-01]
- Hoffmann J., Heisler E., Karpinski S. et al. Epidermal-skin-test 1,000 (EST-1,000)--a new reconstructed epidermis for in vitro skin corrosivity testing. Toxicol In Vitro. 2005; 19 (7): 925—929. doi: 10.1016/j.tiv.2005.06.010.
- Jung K.-M., Lee S.-H., Jang W.-H. et al. KeraSkin-VM: a novel reconstructed human epidermis model for skin irritation tests. Toxicol In Vitro. 2014; 28 (5): 742—750. doi: 10.1016/j.tiv.2014.02.014.
Supplementary files
