New strategies for the development of biologically active suture material
- 作者: Malanyeva A.G.1, Aimaletdinov A.M.1, Zakirova E.Y.1
-
隶属关系:
- Kazan (Volga Region) Federal University
- 期: 卷 145, 编号 4 (2025)
- 页面: 310-319
- 栏目: Articles
- ##submission.dateSubmitted##: 21.11.2025
- ##submission.datePublished##: 15.12.2025
- URL: https://journals.rcsi.science/0042-1324/article/view/352934
- DOI: https://doi.org/10.31857/S0042132425040028
- ID: 352934
如何引用文章
全文:
详细
The review provides information of the development and testing of biologically active surgical suture material at laboratory and clinical conditions. Filaments with antimicrobial effect take the first place among all developments of active pharmaceutical ingredients for prevent infection in the surgical area. It also describes the development of suture material with anti-inflammatory, analgesic and regenerative effects. The article describes the experience of using suture material with stem cells to stimulate angiogenesis and remodel damaged tissues. Modern technologies make it possible to produce new suture filaments with various drugs, with different functionality, biodegradability and biological properties compared to intact commercial filaments.
作者简介
A. Malanyeva
Kazan (Volga Region) Federal University
编辑信件的主要联系方式.
Email: lenahamzina@yandex.ru
Kazan, Russia
A. Aimaletdinov
Kazan (Volga Region) Federal University
Email: lenahamzina@yandex.ru
Kazan, Russia
E. Zakirova
Kazan (Volga Region) Federal University
Email: lenahamzina@yandex.ru
Kazan, Russia
参考
- Глухова И.В., Глухова А.В., Буркова А. К вопросу модернизации хирургического шовного материала // Науч. альманах. 2021. № 10-2 (84). С. 85–89.
- Закирова Е.Ю., Аймалетдинов А.М., Александрова Н.М. и др. Создание видоспецифичного генного препарата для лечения дефектов кожи собак // Уч. зап. Казан. ун. Сер. Естеств. науки. 2020. Т. 162 (3). С. 361–380.
- Каштанов А.Д., Васильев Ю.Л., Байрашевская А.В. Обзор современных материалов, применяемых для покрытия раневых поверхностей // Опер. хирургия клин. анатомия (Пирогов. науч. журн.). 2020. Т. 4 (2). С. 49–56.
- Князюк А.С. Профилактика инфекций области хирургического вмешательства путем использования антибактериального шовного материала // Пробл. здоровья экол. 2017. T. 1 (51). C. 13–19.
- Мохов Е.М., Жеребченко А.В. Биологически активные хирургические шовные материалы (обзор литературы) // Верхневолж. мед. журн. 2012. T. 10 (4). С. 21–28.
- Мохов Е.М., Сергеев А.Н., Кадыков В.А. и др. Использование нового биологически активного хирургического шовного материала в клинической практике // Соврем. пробл. науки образов. 2016. № 5.
- Патахов Г.М., Ахмадудинов М.Г. Биоактивные шовные материалы в гепаторафии // Фунд. исслед. 2011. № 7. С. 124–126.
- Суковатых Б.С., Назаренко П.М., Мосолова А.В., Пашков В.М. Влияние антисептического покрытия мирамистином на прочность и растяжимость шовного материала // Вестн. Нац. мед.-хирург. центра им. Н.И. Пирогова. 2023. Т. 18 (4). С. 103–105.
- Щербак С.Г., Макаренко С.В., Шнейдер О.В. и др. Регенеративная реабилитация при повреждениях сухожилий // Физ. реабил. мед. мед. реабил. 2021. Т. 3 (2). C. 192–206.
- Adams S., Thorpe M., Parks B. et al. Stem cell-bearing suture improves Achilles tendon healing in a rat model // Foot Ankle Int. 2014. V. 35 (3). P. 293–299.
- Antibacterial sutures for wound closure after surgery: a review of clinical and cost-effectiveness and guidelines for use [Internet] // Ottawa (ON): Canadian Agency for Drugs and Technologies in Health, 2014.
- Akombaetwa N., Bwanga A., Makoni P.A., Witika B.A. Applications of electrospun drug-eluting nanofibers in wound healing: current and future perspectives // Polymers. 2022. V. 14 (14). P. 2931.
- Anureet A., Geeta G., Janita J. et al. Drug eluting sutures: a recent update // J. Appl. Pharm. Sci. 2019. V. 9 (7). P. 111–123.
- Beitzel K., Voss A., McCarthy M.B. et al. Coated sutures // Sports Med. Arthrosc. Rev. 2015. V. 23 (3). P. 25–30.
- Casado J.G., Blazquez R., Jorge I. et al. Mesenchymal stem cell-coated sutures enhance collagen depositions in sutured tissues // Wound Repair Regen. 2014. V. 22 (2). P. 256–264.
- Champeau M., Thomassin J.M., Tassaing T., Jérôme C. Current manufacturing processes of drug-eluting sutures // Exp. Opin. Drug Deliv. 2017. V. 14 (11). P. 1293–1303.
- Chen Y., Chai M., Xuan C. et al. Tuning the properties of surgical polymeric materials for improved soft-tissue wound closure and healing // Prog. Mat. Sci. 2024. V. 143. P. 101249.
- Deng X., Qasim M., Ali A. Engineering and polymeric composition of drug-eluting suture: a review // J. Biomed. Mater. Res. A. 2021. V. 109 (10). P. 2065–2081.
- Dennis C., Sethu S., Nayak S. et al. Suture materials – current and emerging trends // J. Biomed. Mater. Res. A. 2016. V. 104 (6). P. 1544–1559.
- Ganiev I., Alexandrova N., Aimaletdinov A. et al. The treatment of articular cartilage injuries with mesenchymal stem cells in different animal species // Open Veter. J. 2021. V. 11 (1). P. 128–134.
- Huh B.K., Kim B.H., Kim S.N. et al. Surgical suture braided with a diclofenac-loaded strand of poly(lactic-co-glycolic acid) for local, sustained pain mitigation // Mater. Sci. Eng. C Mater. Biol. Appl. 2017. V. 79. Р. 209–215.
- Kim H., Kim B.H., Huh B.K. et al. Surgical suture releasing macrophage-targeted drug-loaded nanoparticles for an enhanced anti-inflammatory effect // Biomater. Sci. 2017. V. 5 (8). P. 1670–1677.
- Kulkarni D., Musale S., Panzade P. et al. Surface functionalization of nanofibers: the multifaceted approach for advanced biomedical applications // Nanomaterials (Basel). 2022. V. 4. P. 3899.
- Le W., Cheah A.E., Yao J. Ex-vivo tendon repair augmented with bone marrow derived mesenchymal stem cells stimulated with myostatin for tenogenesis // J. Hand Surg. Asian Pac. Vol. 2018. V. 23 (1). P. 47–57.
- Leaper D., Wilson P., Assadian O. et al. The role of antimicrobial sutures in preventing surgical site infection // Ann. R. Coll. Surg. Engl. 2017. V. 99 (6). P. 439–443.
- Li Y.I., Luo H., Li Y. et al. Surface biofunctional bFGF-loaded electrospun suture accelerates incisional wound healing // Mater. Design. 2023. V. 225. P. 111451.
- Lou C.-W., Hung C.-Y., Wei M. et al. Antibacterial surgical sutures developed using electrostatic yarn wrapping technology // J. Func. Biomat. 2023. V. 14. P. 248.
- Morozov A.M., Mokhov E.M., Lyubsky I.V. et al. The opportunities for developing a new biologically active suture material in surgery (literature review) // J. Exp. Clin. Surg. 2019. V. 12 (3). P. 193–198.
- Muraoka K., Le W., Behn A.W., Yao J. The effect of growth differentiation factor 8 (myostatin) on bone marrow-derived stem cell-coated bioactive sutures in a rabbit tendon repair model // Hand (NY). 2020. V. 15 (2). P. 264–270.
- Naghsh N., Yaghini J., Arab A., Soltani S. Comparison of the number of bacterial colonies among four types of suture threads using simple loop method following periodontal surgery in patients with periodontitis: a single-blind randomized clinical trial // Dent. Res. J. 2023. V. 20. P. 71.
- Öksüz K.E., Kurt B., Şahin İnan Z.D. et al. Novel bioactive glass/graphene oxide-coated surgical sutures for soft tissue regeneration // ACS Omega. 2023. V. 8 (24). P. 21628–21641.
- Parikh K.S., Omiadze R., Josyula A. et al. Ultra-thin, high strength, antibiotic-eluting sutures for prevention of ophthalmic infection // Bioeng. Transl. Med. 2020. V. 6 (2). P. e10204.
- Rasheed U., Kiani M., Butt M. et al. Fabrication and biocompatibility of neem/chitosan coated silk sutures for infection control and wound healing // J. King Saud Uni. Sci. 2024. V. 36 (10). P. 103435.
- Reckhenrich A.K., Kirsch B.M., Wahl E.A. et al. Surgical sutures filled with adipose-derived stem cells promote wound healing // PLoS One. 2014. V. 9 (3). P. 91169.
- Suárez-Vega D.V., Velazco de Maldonado G.J., Ortíz R.L. et al. In vitro degradation of polydioxanone lifting threads in hyaluronic acid // J. Cutan. Aesthet. Surg. 2019. V. 12. P. 145–148.
- Syukri D.M., Nwabor O.F., Singh S. et al. Antibacterial- coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensis eradicates infections // J. Microbiol. Meth. 2020. V. 174. P. 105955.
- Тan E.W., Schon L.C. Mesenchymal stem cell-bearing sutures for tendon repair and healing in the foot and ankle // Foot Ankle Clin. 2016. V. 21 (4). P. 885–890.
- Tranquillo E., Bollino F. New strategies for the development of multifunctional suture threads // Macromol. Symposia. 2021. V. 396. P. 2000315.
- Valeeva A.N., Malanyeva A.G., Rutland C.S. et al. Subconjunctival use of mesenchymal stem cells for the treatment of canine ulcerative keratitis // Opera Med. Physiol. 2024. V. 11 (1). P. 94–102.
- Weldon C.B., Tsui J.H., Shankarappa S.A. et al. Electrospun drug-eluting sutures for local anesthesia // J. Control. Release. 2012. V. 161 (3). P. 903–909.
- Yaman D., Paksoy T., Ustaoğlu G., Demirci M. Evaluation of bacterial colonization and clinical properties of different suture materials in dentoalveoler surgery // J. Oral Maxill. Surg. 2022. V. 80 (2). P. 313–326.
- Yao J., Woon C.Y., Behn A. et al. The effect of suture coated with mesenchymal stem cells and bioactive substrate on tendon repair strength in a rat model // J. Hand Surg. 2012. V. 37 (8). P. 1639–1645.
- Zhang X., Yang Z., Yang X. et al. sustainable antibacterial surgical suture based on recycled silk resource by an internal combination of inorganic nanomaterials // ACS Appl. Mater. Interfac. 2023. V. 15 (25). P. 29971–29981.
补充文件
