Метаболизм триптофана: новый взгляд на роль триптофановых производных в организме человека

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В современной научной литературе пристальное внимание уделяется биологической роли катаболитов триптофана как в норме, так и при различных патологиях. Все больше появляется сообщений, что катаболиты триптофанового обмена играют сигнальную роль в организме человека и в микробном сообществе кишечника. Активно изучаются рецепторы и сигнальные пути в организме человека так называемых триптофановых сигнальных молекул (ТриСМ), их клеточные мишени, физиологические и метаболические эффекты. В настоящее время установлено, что практически все катаболиты триптофанового обмена являются сигнальными молекулами. Многие из них реализуют свою сигнальную роль через арил-углеводородные рецепторы (АhR). Доминантный путь обмена триптофана для организма человека – это кинурениновый путь, который является источником универсальных сигнальных молекул – кинуренина, хинолиновой и кинуреновой кислот. Индольный путь катаболизма триптофана, главный для микробиоты, за исключением реакций образования индолов в иммунокомпетентных клетках, является источником межцарственных и межвидовых сигнальных молекул – индола и его производных: индол-3-пирувата, индол-3-лактата, индол-3-ацетата, индол-3-пропионата, индол-3-акрилата, индол-3-бутирата и индол-3-ацетальдегида. Серотонин и мелатонин являются также универсальными сигнальными молекулами и широко изучены при различных заболеваниях нервной системы.

Об авторах

О. П. Шатова

Российский национальный исследовательский медицинский
университет им. Н.И. Пирогова

Автор, ответственный за переписку.
Email: shatova.op@gmail.com
Россия, Москва

А. В. Шестопалов

Российский национальный исследовательский медицинский
университет им. Н.И. Пирогова; НМИЦ Детской гематологии, онкологии и иммунологии
им. Дмитрия Рогачева Минздрава России

Email: shatova.op@gmail.com
Россия, Москва; Россия, Москва

Список литературы

  1. Abbott N.J. Inflammatory mediators and modulation of blood-brain barrier permeability, cellular and molecular neurobiology // Cell Mol. Neirobiol. 2000. V. 20. P. 131–147. https://doi.org/10.1023/a:1007074420772
  2. Agus A., Planchais J., Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease // Cell Host Microbe. 2018. V. 23. P. 716–724. https://doi.org/10.1016/j.chom.2018.05.003
  3. Badawy A.A. Tryptophan metabolism: a versatile area providing multiple targets for pharmacological intervention // Egypt. J. Basic Clin. Pharmacol. 2019. V. 9. Art. 101415. https://doi.org/10.32527/2019/101415
  4. Barthelemy A., Sencio V., Soulard D. et al. Interleukin-22 immunotherapy during severe influenza enhances lung tissue integrity and reduces secondary bacterial systemic invasion // Infect. Immun. 2018. V. 86. P. e00706-17. https://doi.org/10.1128/IAI.00706-17
  5. Behl T., Kaur I., Sehgal A. et al. The footprint of kynurenine pathway in neurodegeneration: janus-faced role in Parkinson’s disorder and therapeutic implications // Int. J. Mol. Sci. 2021. V. 22. P. 6737. https://doi.org/10.3390/ijms22136737
  6. Blum K., Gold M., Lianos-Gomez L. et al. Hypothesizing nutrigenomic-based precision anti-obesity treatment and prophylaxis: should we be targeting sarcopenia induced brain dysfunction? // Int. J. Environ. Res. Publ. Health. 2021. V. 18. P. 9774. https://doi.org/10.3390/ijerph18189774
  7. Bock K.W. Human and rodent aryl hydrocarbon receptor (AHR): from mediator of dioxin toxicity to physiologic AhR functions and therapeutic options // Biol. Chem. 2017. V. 398. P. 455–464. https://doi.org/10.1515/hsz-2016-0303
  8. Carbonnelle-Puscian A., Copie-Bergman C., Baia M. et al. The novel immunosuppressive enzyme IL4I1 is expressed by neoplastic cells of several B-cell lymphomas and by tumor-associated macrophages // Leukemia. 2009. V. 23. P. 952–960. https://doi.org/10.1038/leu.2008.380
  9. Carpenedo R., Pittaluga A., Cozzi A. et al. Presynaptic kynurenate-sensitive receptors inhibit glutamate release // Eur. J. Neurosci. 2001. V. 13. P. 2141–2147. https://doi.org/10.1046/j.0953-816X.2001.01592.x
  10. Castro-Portuguez R., Sutphin G.L. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: targeting tryptophan metabolism to promote longevity and healthspan // Experim. Gerontol. 2020. V. 132. P. 110841. https://doi.org/10.1016/j.exger.2020.110841
  11. Cecchi M., Paccosi S., Silvano A. et al. Dexamethasone induces the expression and function of tryptophan-2-3-dioxygenase in SK-Mel-28 melanoma cells // Pharmaceuticals (Basel). 2021. V. 14 (3). P. 211. https://doi.org/10.3390/ph14030211
  12. Cénit M.C., Matzaraki V., Tigchelaar E. et al. Rapidly expanding knowledge on the role of the gut microbiome in health and disease // Biochim. Biophys. Acta – Mol. Basis Dis. 2014. V. 1842. P. 1981–1992. https://doi.org/10.1016/j.bbadis.2014.05.023
  13. Cervenka I., Agudelo L.Z., Ruas J.L. Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health // Science. 2017. V. 357. P. eaaf9794. https://doi.org/10.1126/science.aaf9794
  14. Chen M., Yang X., Lai X. et al. Structural investigation for optimization of anthranilic acid derivatives as partial FXR agonists by in silico approaches // Int. J. Mol. Sci. 2016. V. 17. P. 536. https://doi.org/10.3390/ijms17040536
  15. Chen Y., Guillemin G.J. Kynurenine pathway metabolites in humans: disease and healthy states // Int. J. Tryptophan Res. 2009. V. 2. P. 1–19. https://doi.org/10.4137/ijtr.s2097
  16. Chimerel C., Emery E., Summers D. et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells // Cell Rep. 2014. V. 9. P. 1202–1208. https://doi.org/10.1016/j.celrep.2014.10.032
  17. Connor T.J., Neasa S., Sullivan J. et al. Induction of indolamine 2,3-dioxygenase and kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma? // Neurosci. Lett. 2008. V. 441 (1). P. 29–34. https://doi.org/10.1016/j.neulet.2008.06.007
  18. Deng Y., Lim A., Lee J. et al. Diffusible signal factor (DSF) quorum sensing signal and structurally related molecules enhance the antimicrobial efficacy of antibiotics against some bacterial pathogens // BMC Microbiol. 2014. V. 14. P. 51. https://doi.org/10.1186/1471-2180-14-51
  19. Díez-Sainz E., Lorente-Cebrian S., Aranaz P. et al. Potential mechanisms linking food-derived microRNAs, gut microbiota and intestinal barrier functions in the context of nutrition and human health // Front. Nutr. 2021. V. 8. P. 586564. https://doi.org/10.3389/fnut.2021.586564
  20. Ehrlich A.M., Pacheco A., Henrick B. et al. Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells // BMC Microbiol. 2020. V. 20. P. 356. https://doi.org/10.1186/s12866-020-02023-y
  21. Evrensel A., Ceylan M.E. The gut-brain axis: the missing link in depression // Clin. Psychopharmacol. Neurosci. 2015. V. 13. P. 239–244. https://doi.org/10.9758/cpn.2015.13.3.239
  22. Ferreira F.S., Santos T., Junior O. et al. Quinolinic acid impairs redox homeostasis, bioenergetic, and cell signaling in rat striatum slices: prevention by coenzyme Q10 // Neurotox. Res. 2022. V. 40. P. 473–484. https://doi.org/10.1007/s12640-022-00484-9
  23. van Galen K.A., Horst K., Booij J. et al. The role of central dopamine and serotonin in human obesity: lessons learned from molecular neuroimaging studies // Metabolism: Clin. Experim. 2018. V. 85. P. 325–339. https://doi.org/10.1016/j.metabol.2017.09.007
  24. van Galen K.A., Horst K.W., Serlie M.J. Serotonin, food intake, and obesity // Obesity Rev. 2021. V. 22. P. e13210. https://doi.org/10.1111/obr.13210
  25. Gao K., Mu C., Farzi A. et al. Tryptophan metabolism: a link between the gut microbiota and brain // Adv. Nutr. 2020. V. 11. P. 709–723. https://doi.org/10.1093/advances/nmz127
  26. Grifka-Walk H.M., Jenkins B.R., Kominsky D.J. Amino acid Trp: the far out impacts of host and commensal tryptophan metabolism // Front. Immunol. 2021. V. 12. P. 653208. https://doi.org/10.3389/fimmu.2021.653208
  27. Guo J., Williams D., Puhl H. et al. Inhibition of N-type calcium channels by activation of GPR35, an orphan receptor, heterologously expressed in rat sympathetic neurons // J. Pharmacol. Experim. Therap. 2008. V. 324. P. 342–351. https://doi.org/10.1124/jpet.107.127266
  28. Gutiérrez-Vázquez C., Quintana F.J. Regulation of the immune response by the aryl hydrocarbon receptor // Immunity. 2018. V. 48 (1). P. 19–33. https://doi.org/10.1016/j.immuni.2017.12.012
  29. Hendrikx T., Schnabl B. Indoles: metabolites produced by intestinal bacteria capable of controlling liver disease manifestation // J. Int. Med. 2019. V. 286. P. 32–40. https://doi.org/10.1111/joim.12892
  30. Jones S.P., Guillemin G.J., Brew B.J. The kynurenine pathway in stem cell biology // Int. J. Tryptophan Res. 2019. V. 6. P. 57–66. https://doi.org/10.4137/IJTR.S12626
  31. Kita T., Morrison P., Heyes M. et al. Effects of systemic and central nervous system localized inflammation on the contributions of metabolic precursors to the L-kynurenine and quinolinic acid pools in brain // J. Neurochem. 2002. V. 82. P. 258–268. https://doi.org/10.1046/j.1471-4159.2002.00955.x
  32. Konopelski P., Mogilnicka I. Biological effects of indole-3-propionic acid, a gut microbiota-derived metabolite, and its precursor tryptophan in mammals’ health and disease // Int. J. Mol. Sci. 2022. V. 23. P. 1222. https://doi.org/10.3390/ijms23031222
  33. Krishnan S., Ding Y., Saedi N. et al. Erratum: gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages // Cell Rep. 2018. V. 23. P. 1099–1111. https://doi.org/10.1016/j.celrep.2019.08.080
  34. Kumar P., Lee J.H., Lee J. Diverse roles of microbial indole compounds in eukaryotic systems // Biol. Rev. 2021. V. 96. P. 2522–2545. https://doi.org/10.1111/brv.12765
  35. Labadie B.W., Bao R., Luke J.J. Reimagining IDO pathway ion axis // Clin. Cancer Res. 2019. V. 25. P. 1462–1471. https://doi.org/10.1158/1078-0432.CCR-18-2882
  36. Lee J.H., Wood T.K., Lee J. Roles of indole as an interspecies and interkingdom signaling molecule // Trends Microbiol. 2015. V. 23. P. 707–718. https://doi.org/10.1016/j.tim.2015.08.001
  37. Maffei M.E. 5-hydroxytryptophan (5-htp): Natural occurrence, analysis, biosynthesis, biotechnology, physiology and toxicology // Int. J. Mol. Sci. 2021. V. 22. P. 181. https://doi.org/10.3390/ijms22010181
  38. Mangge H., Summers K., Mrinitzer A. et al. Obesity-related dysregulation of the tryptophan-kynurenine metabolism: role of age and parameters of the metabolic syndrome // Obesity. 2014. V. 22. P. 195–201. https://doi.org/10.1002/oby.20491
  39. Marszalek-Grabska M. et al. Kynurenine emerges from the shadows – current knowledge on its fate and function // Pharmacol. Therap. 2021. V. 225. P. 107845. https://doi.org/10.1016/j.pharmthera.2021.107845
  40. Marszalek-Grabska M., Stachniuk A., Iwaniak P. et al. Unexpected content of kynurenine in mother’s milk and infant formulas // Sci. Rep. 2022. V. 12. P. 6464. https://doi.org/10.1038/S41598-022-10075-5
  41. McCuen-Wurst C., Ruggieri M., Allison K.C. Disordered eating and obesity: associations between binge-eating disorder, night-eating syndrome, and weight-related comorbidities // Ann. N.Y. Acad. Sci. 2018. V. 1411. P. 96–105. https://doi.org/10.1111/nyas.13467
  42. de Mello V.D., Paananen J., Lindstrom J. et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish diabetes prevention study // Sci. Rep. 2017. V. 7. P. 46337. https://doi.org/10.1038/srep46337
  43. O’Mahony S.M., Clarke G., Borre Y.E. et al. Serotonin, tryptophan metabolism and the brain–gut–microbiome axis // Behav. Brain Res. 2015. V. 277. P. 32–48. https://doi.org/10.1016/j.bbr.2014.07.027
  44. Opitz C.A., Litzenburger U., Sahm F. et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor // Nature. 2011. V. 478. P. 197–203. https://doi.org/10.1038/nature10491
  45. Platten M., Nollen E., Rohrig U. et al. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond // Nat. Rev. Drug Dis. 2019. V. 18. P. 379–401. https://doi.org/10.1038/s41573-019-0016-5
  46. Qiao P., Zhang C., Yu J. et al. Quinolinic acid, a tryptophan metabolite of the skin microbiota, negatively regulates NLRP3 inflammasome through AhR in psoriasis // J. Invest. Dermatol. 2022. V. 142. P. 2184–2193. https://doi.org/10.1016/j.jid.2022.01.010
  47. Roager H.M., Licht T.R. Microbial tryptophan catabolites in health and disease // Nat. Commun. 2018. V. 9. P. 3294. https://doi.org/10.1038/s41467-018-05470-4
  48. Sas K., Szabó E., Vécsei L. Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection // Molecules. 2018. V. 23. P. 191. https://doi.org/10.3390/molecules23010191
  49. Savitz J. The kynurenine pathway: a finger in every pie // Mol. Psych. 2020. V. 25. P. 131–147. https://doi.org/10.1038/s41380-019-0414-4
  50. Shestopalov A.V., Shatova O.P., Komarova E.F. et al. Features of metabolic coupling in the “superorganism” system (host–microbiota) // Crim. J. Experim. Clin. Med. 2020a. V. 10. P. 95–103. https://doi.org/10.37279/2224-6444-2020-10-2-95-103
  51. Shestopalov A.V., Shatova O.P., Karbyshev M.S. et al. “Kynurenine switch” and obesity // Bull. Siberian Med. 2020b. V. 4. P. 103–111. https://doi.org/10.20538/1682-0363-2021-4-103-111
  52. Shestopalov A.V. et al. Coupling features of intestinal and serum indole pools in obesity // Prob. Biol. Med. Pharm. Chem. 2021. V. 24. P. 3–12. https://doi.org/10.29296/25877313-2021-10-01
  53. Silva S., Shimizu J., Oliveira D. et al. A diarylamine derived from anthranilic acid inhibits ZIKV replication // Sci. Rep. 2019. V. 9. P. 17703. https://doi.org/10.1038/s41598-019-54169-z
  54. Sittipo P. Brain profiling in murine colitis and human epilepsy reveals neutrophils and TNFα as mediators of neuronal hyperexcitability // J. Neuroinflamm. 2021. V. 19. P. 154. https://doi.org/10.1186/s12974-022-02510-1
  55. Song S., Yin W., Sun X. et al. Anthranilic acid from Ralstonia solanacearum plays dual roles in intraspecies signaling and inter-kingdom communication // ISME J. 2020. V. 14. P. 2248–2260. https://doi.org/10.1038/s41396-020-0682-7
  56. Stone T.W., Perkins M.N. Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS // Eur. J. Pharmacol. 1981. V. 72. P. 411–412. https://doi.org/10.1016/0014-2999(81)90587-2
  57. Sun M., Ma N., He T. et al. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR) // Crit. Rev. Food Sci. Nutr. 2020. V. 60. P. 1760–1768. https://doi.org/10.1080/10408398.2019.1598334
  58. Szelest M., Walczak K., Plech T. A new insight into the potential role of tryptophan-derived AhR ligands in skin physiological and pathological processes // Int. J. Mol. Sci. 2021. V. 22. P. 1104. https://doi.org/10.3390/ijms22031104
  59. Thomas T., Stefanoni D., Reisz J. et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status // JCI Insight. 2019. V. 5. P. e140327. https://doi.org/10.1172/JCI.INSIGHT.140327
  60. Tunaru S., Kero J., Schaub A. et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect // Nat. Med. 2003. V. 9. P. 352–355. https://doi.org/10.1038/nm824
  61. Vamos E., Pardutz A., Klivenyi P. et al. The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection // J. Neurol. Sci. 2009. V. 283. P. 21–27. https://doi.org/10.1016/j.jns.2009.02.326
  62. Venkatesh M., Mukherjee S., Wang H. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and toll-like receptor 4 // Immunity. 2014. V. 41. P. 296–310. https://doi.org/10.1016/j.immuni.2014.06.014
  63. Vyhlídalová B., Krrasulova K., Pecinkova P. et al. Gut microbial catabolites of tryptophan are ligands and agonists of the aryl hydrocarbon receptor: a detailed characterization // Int. J. Mol. Sci. 2020. V. 21. P. 2614. https://doi.org/10.3390/ijms21072614
  64. Wang S.Z., Yu Y.J., Adeli K. Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota–gut–brain–liver axis // Microorganisms. 2020. V. 8. P. 527. https://doi.org/10.3390/microorganisms8040527
  65. Wei G.Z., Martin K.A., Xing P.Y. et al. Tryptophan-metabolizing gut microbes regulate adult neurogenesis via the aryl hydrocarbon receptor // PNAS USA. 2021. V. 118 (27). P. e2021091118. https://doi.org/10.1073/pnas.2021091118
  66. Wolf A.M., Wolf D., Rumpold H. et al. Overexpression of indoleamine 2,3-dioxygenase in human inflammatory bowel disease // Clin. Immunol. 2004. V. 113. P. 47–55. https://doi.org/10.1016/j.clim.2004.05.004
  67. Zádori D., Klivenyi P., Szalardy L. et al. Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: novel therapeutic strategies for neurodegenerative disorders // J. Neurol. Sci. 2012. V. 322. P. 187–191. https://doi.org/10.1016/j.jns.2012.06.004
  68. Zunszain P.A., Anacker C., Cattaneo A. et al. Interleukin-1β: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis // Neuropsychopharmacology. 2012. V. 37. P. 939–949. https://doi.org/10.1038/npp.2011.277

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (231KB)
3.

Скачать (355KB)
4.

Скачать (88KB)

© О.П. Шатова, А.В. Шестопалов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах