Determination of Cortisol in Animals’ Hair as a Marker of Chronic Stress

封面

如何引用文章

全文:

详细

Hair is a noninvasive biomatrix that can provide information on the activation of the hypothalamic-pituitary-adrenal axis, maintenance of homeostasis, and the success of animal adaptation to natural and anthropogenic stressors. The literature studying the relationship between the hair cortisol concentration detected in the farm, domestic, and wild animals with various biological parameters and behavioural factors was reviewed. It is noted that the hair cortisol concentration mainly correlates with the animal species, sex, age, sampling location, colour, pregnancy, season of the year, housing conditions, the presence of diseases, and behavioural characteristics. Some factors can be directly related to stress and animal adaptation to changing conditions, which is reflected in the blood cortisol concentration and its subsequent release into the hair shaft, or be inconsistent and species dependent.

作者简介

J. Samsonova

Lomonosov Moscow State University, Faculty of Chemistry; Vavilov Institute of General Genetics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sushk_90@mail.ru
Moscow, Russia; Moscow, Russia

N. Saushkin

Lomonosov Moscow State University, Faculty of Chemistry

Email: sushk_90@mail.ru
Moscow, Russia

A. Piskunov

Vavilov Institute of General Genetics, Russian Academy of Sciences

Email: sushk_90@mail.ru
Moscow, Russia

参考

  1. Новгородова И.П. Методы определения концентрации кортизола у животных // Аграр. наука. 2024. № 4. С. 35–43.
  2. Accorsi P.A., Carloni E., Valsecchi P. et al. Cortisol determination in hair and faeces from domestic cats and dogs // Gen. Comp. Endocrinol. 2008. V. 155 (2). P. 398–402. https://doi.org/10.1016/j.ygcen.2007.07.002
  3. Acker M., Mastromonaco G., Schulte-Hostedde A.I. The effects of body region, season and external arsenic application on hair cortisol concentration // Conserv. Phy- siol. 2018. V. 6. P. coy037.
  4. Agradi S., Munga A., Barbato O. et al. Goat hair as a bioindicator of environmental contaminants and adrenal activation during vertical transhumance // Front. Vet. Sci. 2023. V. 10. P. 1274081.
  5. Ashley N.T., Barboza P.S., Macbeth B.J. et al. Glucocorticosteroid concentrations in feces and hair of captive caribou and reindeer following adrenocorticotropic hormone challenge // Gen. Comp. Endocrinol. 2011. V. 172 (3). P. 382–391.
  6. Ataallahi M., Nejad J.G., Park K.H. Selection of appropriate biomatrices for studies of chronic stress in animals: a review // J. Anim. Sci. Technol. 2022. V. 64 (4). P. 621–639.
  7. Azevedo A., Bailey L., Bandeira V. et al. Age, sex and storage time influence hair cortisol levels in a wild mammal population // PLoS One. 2019. V. 14 (8). P. e0221124.
  8. Babic N.L., Johnstone C.P., Reljić S. et al. Evaluation of physiological stress in free-ranging bears: current knowledge and future directions // Biol. Rev. Camb. Philos. Soc. 2023. V. 98 (1). P. 168–190.
  9. Bacci M.L., Nannoni E., Govoni N. et al. Hair cortisol determination in sows in two consecutive reproductive cycles // Reprod. Biol. 2014. V. 14 (3). P. 218–223.
  10. Bartling-John E.E., Phillips K.A. The effect of body region on hair cortisol concentration in common marmosets (Callithrix jacchus) // Comp. Med. 2021. V. 71 (2). P. 148–151.
  11. Bechshøft T.Ø., Sonne C., Dietz R. et al. Cortisol levels in hair of East Greenland polar bears // Sci. Total. Environ. 2011. V. 409 (4). P. 831–834.
  12. Beliniak A., Gryz J., Klich D. et al. Long-term, medium-term and acute stress response of urban populations of Eurasian red squirrels affected by different levels of human disturbance // PLoS One. 2024. V. 19 (5). P. e0302933.
  13. Bennett A., Hayssen V. Measuring cortisol in hair and saliva from dogs: coat color and pigment differences // Domest. Anim. Endocrinol. 2010. V. 39 (3). P. 171–180.
  14. Bergamin C., Comin A., Corazzin M. et al. Cortisol, DHEA, and sexual steroid concentrations in fattening pigs’ hair // Animals (Basel). 2019. V. 9 (6). P. 345.
  15. Bowland G.B., Bernstein R.M., Koster J. et al. Fur color and nutritional status predict hair cortisol concentrations of dogs in Nicaragua // Front. Vet. Sci. 2020. V. 7. P. 565346.
  16. Braun U., Clavadetscher G., Baumgartner M.R. et al. Hair cortisol concentration and adrenal gland weight in healthy and ill cows // Schweiz. Arch. Tierheilkd. 2017a. V. 159 (9). P. 493–495.
  17. Braun U., Michel N., Baumgartner M.R. et al. Cortisol concentration of regrown hair and hair from a previously unshorn area in dairy cows // Res. Vet. Sci. 2017b. V. 114. P. 412–415.
  18. Bryan H.M., Darimont C.T., Paquet P.C. et al. Stress and reproductive hormones in grizzly bears reflect nutritional benefits and social consequences of a salmon foraging niche // PLoS One. 2013. V. 8. P. 1–10.
  19. Bryan H.M., Smits J.E., Koren L. et al. Heavily hunted wolves have higher stress and reproductive steroids than wolves with lower hunting pressure // Funct. Ecol. 2015. V. 29. P. 347–356.
  20. Burnard C., Ralph C., Hynd P. et al. Hair cortisol and its potential value as a physiological measure of stress response in human and nonhuman animals // Anim. Prod. Sci. 2017. V. 57. P. 401–414.
  21. Burnett T.A., Madureira A.M., Silper B.F. et al. Factors affecting hair cortisol concentrations in lactating dairy cows // J. Dairy Sci. 2014. V. 97 (12). P. 7685–7690.
  22. Burnett T.A., Madureira A.M., Silper B.F. et al. Relationship of concentrations of cortisol in hair with health, biomarkers in blood, and reproductive status in dairy cows // J. Dairy Sci. 2015. V. 98 (7). P. 4414–4426.
  23. Carlitz E.H., Kirschbaum C., Stalder T., van Schaik C.P. Hair as a long-term retrospective cortisol calendar in orangutans (Pongo spp.): new perspectives for stress monitoring in captive management and conservation // Gen. Comp. Endocrinol. 2014. V. 195. P. 151–156.
  24. Carlitz E.H., Kirschbaum C., Miller R. et al. Effects of body region and time on hair cortisol concentrations in chimpanzees (Pan troglodytes) // Gen. Comp. Endocrinol. 2015. V. 223. P. 9–15.
  25. Carlitz E.H.D., Miller R., Kirschbaum C. et al. Measuring hair cortisol concentrations to assess the effect of anthropogenic impacts on wild chimpanzees (Pan troglodytes) // PLoS One. 2016. V. 11. P. e0151870.
  26. Carlsson A.M., Mastromonaco G., Vandervalk E., Kutz S. Parasites, stress and reindeer: infection with abomasal nematodes is not associated with elevated glucocorticoid levels in hair or faeces // Conserv. Physiol. 2016. V. 4 (1). P. cow058.
  27. Casal N., Manteca X., Escribano D. et al. Effect of environmental enrichment and herbal compound supplementation on physiological stress indicators (chromogranin A, cortisol and tumour necrosis factor-α) in growing pigs // Animal. 2017a. V. 11 (7). P. 1228–1236.
  28. Casal N., Manteca X., Peña R. et al. Analysis of cortisol in hair samples as an indicator of stress in pigs // J. Vet. Behav. 2017b. V. 19. P. 1–6.
  29. Cattet M., Macbeth B.J., Janz D.M. et al. Quantifying long-term stress in brown bears with the hair cortisol concentration: a biomarker that may be confounded by rapid changes in response to capture and handling // Conserv. Physiol. 2014. V. 2 (1). P. cou026.
  30. Cattet M., Stenhouse G.B., Janz D.M. et al. The quantification of reproductive hormones in the hair of captive adult brown bears and their application as indicators of sex and reproductive state // Conserv. Physiol. 2017. V. 5 (1). P. cox032.
  31. Cerasoli F., Podaliri Vulpiani M., Saluti G. et al. Assessment of welfare in groups of horses with different management, environments and activities by measuring cortisol in horsehair, using liquid chromatography coupled to hybrid orbitrap high-resolution mass spectrometry // Animals (Basel). 2022. V. 12 (14). P. 1739.
  32. Chen C.H., Chang C.C., Chen W.C., Lee Y.J. Evaluation of chronic stress status and quality of life in cats suffering from chronic kidney disease and suspected feline infectious peritonitis based on hair cortisol concentration analysis and a questionnaire // Vet. Q. 2024. V. 44 (1). P. 1–9.
  33. Cobb T., Hantzopoulou GC., Narayan E. Relationship between wool cortisol, wool quality indices of Australian merino rams and climatic variables in Tasmania // Front. Anim. Sci. 2023. V. 4. P. 1234343.
  34. Comin A., Prandi A., Peric T. et al. Hair cortisol levels in dairy cows from winter housing to summer highland grazing // Livest. Sci. 2011. V. 138 (1–3). P. 69–73.
  35. Comin A., Veronesi M.C., Montillo M. et al. Hair cortisol level as a retrospective marker of hypothalamic- pituitary-adrenal axis activity in horse foals // Vet. J. 2012a. V. 194 (1). P. 131–132.
  36. Comin A., Zufferli V., Peric T. et al. Hair cortisol levels determined at different body sites in the New Zealand white rabbit // World Rabbit Sci. 2012b. V. 20. P. 149–154.
  37. Comin A., Peric T., Corazzin M. et al. Hair cortisol as a marker of hypothalamic-pituitary-adrenal axis activation in Friesian dairy cows clinically or physiologically compromised // Livest. Sci. 2013. V. 152 (1). P. 36–41.
  38. Contreras E.T., Vanderstichel R., Hovenga C., Lappin M.R. Evaluation of hair and nail cortisol concentrations and associations with behavioral, physical, and environmental indicators of chronic stress in cats // J. Vet. Intern. Med. 2021. V. 35. P. 2662–2672.
  39. Cook N.J. Review: minimally invasive sampling media and the measurement of corticosteroids as biomarkers of stress in animals // Can. J. Anim. Sci. 2012. V. 92. P. 227–259.
  40. Cooke R.F., Schubach K.M., Marques R.S. et al. Effects of temperament on physiological, productive, and reproductive responses in beef cows // J. Anim. Sci. 2017. V. 95. P. 1–8.
  41. Cooke A.S., Mullan S., Morten C. et al. Comparison of the welfare of beef cattle in housed and grazing systems: hormones, health, and behaviour // J. Agric. Sci. 2023. V. 161 (3). P. 450–463.
  42. Corradini S., Accorsi P.A., Boari A. et al. Evaluation of hair cortisol in the diagnosis of hypercortisolism in dogs // J. Vet. Int. Med. 2013. V. 27 (5). P. 1268–1272.
  43. Creutzinger K.C., Stookey J.M., Marfleet T.W. et al. An investigation of hair cortisol as a measure of long-term stress in beef cattle: results from a castration study // Can. J. Anim. Sci. 2017. V. 97 (3). P. 499–509.
  44. Davenport M.D., Tiefenbacher S., Lutz C.K. et al. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques // Gen. Comp. Endocrinol. 2006. V. 147. P. 255–261.
  45. Dettmer A.M., Novak M.A., Meyer J.S., Suomi S.J. Population density-dependent hair cortisol concentrations in rhesus monkeys (Macaca mulatta) // Psychoneuroendocrinology. 2014. V. 42. P. 59–67.
  46. Doss E.M., Jouffroy M., Rey B. et al. Technical validation and a comparison of two methods to quantify individual levels of glucocorticoids in Alpine marmot hair // MethodsX. 2023. V. 11. P. 102418.
  47. Dulude-de Broin F., Côté S.D., Whiteside D.P., Mastromonaco G.F. Faecal metabolites and hair cortisol as biological markers of HPA-axis activity in the Rocky Mountain goat // Gen. Comp. Endocrinol. 2019. V. 280. P. 147–157.
  48. Duran M.C., Janz D.M., Waldner C.L. et al. Hair cortisol concentration as a stress biomarker in horses: associations with body location and surgical castration // J. Equ. Vet. Sci. 2017. V. 55. P. 27–33.
  49. Endo N., Yamane H., Rahayu L.P., Tanaka T. Effect of repeated adrenocorticotropic hormone administration on reproductive function and hair cortisol concentration during the estrous cycle in goats // Gen. Comp. Endocrinol. 2018. V. 259. P. 207–212.
  50. Fairbanks L.A., Jorgensen M.J., Bailey J.N. et al. Heritability and genetic correlation of hair cortisol in vervet monkeys in low and higher stress environments // Psychoneuroendocrinology. 2011. V. 36. P. 1201–1208.
  51. Finkler H., Terkel J. Cortisol levels and aggression in neutered and intact free-roaming female cats living in urban social groups // Physiol. Behav. 2010. V. 99. P. 343–347.
  52. Finkler H., Terkel J. The relationship between individual behavioural styles, dominance rank and cortisol levels of cats living in urban social groups // Appl. Anim. Behav. Sci. 2015. V. 173. P. 22–28.
  53. Fourie N.H., Bernstein R.M. Hair cortisol levels track phylogenetic and age related differences in hypothalamic- pituitary-adrenal (HPA) axis activity in non-human primates // Gen. Comp. Endocrinol. 2011. V. 174. P. 150–155.
  54. Fourie N.H., Jolly C.J., Phillips-Conroy J.E. et al. Variation of hair cortisol concentrations among wild populations of two baboon species (Papio anubis, P. hamadryas) and a population of their natural hybrids // Primates. 2015. V. 56. P. 259–272.
  55. Fourie N.H., Brown J.L., Jolly C.J. et al. Sources of variation in hair cortisol in wild and captive non-human primates // Zoology. 2016. V. 119 (2). P. 119–125.
  56. Fox D., Wilson B., Narayan E. Non-invasive wool hormone assessment of Australian merino rams (Ovis aries): a pilot investigation of cortisol and testosterone // Front. Vet. Sci. 2024. V. 11. P. 1448232.
  57. Fischer-Tenhagen C., Ladwig-Wiegard M., Heuwieser W., Thöne-Reineke C. Is hair cortisol a potential indicator for stress caused by chronic lameness in dairy cows? // J. Dairy Sci. 2018. V. 101 (6). P. 5439–5443.
  58. Fürtbauer I., Solman C., Fry A. Sheep wool cortisol as a retrospective measure of long-term HPA axis activity and its links to body mass // Domest. Anim. Endocrinol. 2019. V. 68. P. 39–46.
  59. Galuppi R., Leveque J.F., Beghelli V. et al. Cortisol levels in cats’ hair in presence or absence of Microsporum canis infection // Res. Vet. Sci. 2013. V. 95. P. 1076–1080.
  60. Garber P.A., McKenney A., Bartling-John E. et al. Life in a harsh environment: the effects of age, sex, reproductive condition, and season on hair cortisol concentration in a wild non-human primate // PeerJ. 2020. V. 8. P. e9365.
  61. Gardela J., Carbajal A., Tallo-Parra O. et al. Temporary relocation during rest periods: relocation stress and other factors influence hair cortisol concentrations in horses // Animals (Basel). 2020. V. 10 (4). P. 642.
  62. Ghassemi Nejad J., Lohakare J.D., Son J.K. et al. Wool cortisol is a better indicator of stress than blood cortisol in ewes exposed to heat stress and water restriction // Animal. 2014. V. 8 (1). P. 128–132.
  63. Ghassemi Nejad J., Kim B.W., Lee B.H., Sung K.I. Coat and hair color: hair cortisol and serotonin levels in lactating Holstein cows under heat stress conditions // Anim. Sci. J. 2017. V. 88 (1). P. 190–1194.
  64. Ghassemi Nejad J., Park K.H., Forghani F. et al. Measuring hair and blood cortisol in sheep and dairy cattle using RIA and ELISA assay: a comparison // Biol. Rhythm Res. 2019. V. 51 (6). P. 887–897.
  65. Ghassemi Nejad J., Ghaffari M.H., Ataallahi M. et al. Stress concepts and applications in various matrices with a focus on hair cortisol and analytical methods // Animals. 2022. V. 12 (22). P. 3096.
  66. González-de-la-Vara M.R., Valdez R.A., Lemus-Ramirez V. et al. Effects of adrenocorticotropic hormone challenge and age on hair cortisol concentrations in dairy cattle // Can. J. Vet. Res. 2011. V. 75 (3). P. 216–221.
  67. Grelet C., Dries V.V., Leblois J. et al. Identification of chronic stress biomarkers in dairy cows // Animal. 2022. V. 16 (5). P. 100502.
  68. Grigg E.K., Nibblett B.M., Robinson J.Q., Smits J.E. Evaluating pair versus solitary housing in kennelled domestic dogs (Canis familiaris) using behaviour and hair cortisol: a pilot study // Vet. Rec. Open. 2017. V. 4 (1). P. e000193.
  69. Gupta A., Yadav U., Bansal K.N. et al. Hair cortisol: a biomarker of chronic stress in animals and its association with reproduction // Anim. Reprod. Update. 2023. V. 3 (2). P. 43–58.
  70. Hamel A.F., Meyer J.S., Henchey E. et al. Effects of shampoo and water washing on hair cortisol concentrations // Clin. Chim. Acta. 2011. V. 412 (3–4). P. 382–385.
  71. Heimbürge S., Kanitz E., Otten W. The use of hair cortisol for the assessment of stress in animals // Gen. Comp. Endocrinol. 2019. V. 270. P. 10–17.
  72. Heimbürge S., Kanitz E., Tuchscherer A., Otten W. Within a hair’s breadth – factors influencing hair cortisol levels in pigs and cattle // Gen. Comp. Endocrinol. 2020. V. 288. P. 113359.
  73. Hein A., Baumgartner K., von Fersen L. et al. Analysis of hair steroid hormones in polar bears (Ursus maritimus) via liquid chromatography-tandem mass spectrometry: comparison with two immunoassays and application for longitudinal monitoring in zoos // Gen. Comp. Endocrinol. 2021. V. 310. P. 113837.
  74. Jewgenow K., Azevedo A., Albrecht M. et al. Hair cortisol analyses in different mammal species: choosing the wrong assay may lead to erroneous results // Conserv. Physiol. 2020. V. 8 (1). P. coaa009.
  75. Kalliokoski O., Jellestad F.K., Murison R. A systematic review of studies utilizing hair glucocorticoids as a measure of stress suggests the marker is more appropriate for quantifying short-term stressors // Sci. Rep. 2019. V. 9. P. 11997.
  76. Karaer M.C., Čebulj-Kadunc N., Snoj T. Stress in wildlife: comparison of the stress response among domestic, captive, and free-ranging animals // Front Vet. Sci. 2023. V. 10. P. 1167016.
  77. Keogh M.J., Gastaldi A., Charapata P. et al. Stress-related and reproductive hormones in hair from three north Pacific otariid species: Steller sea lions, California sea lions and northern fur seals // Conserv. Physiol. 2020. V. 8 (1). P. coaa069.
  78. Keogh M.J., Charapata P., Fadely B.S. et al. Whiskers as a novel tissue for tracking reproductive and stress-related hormones in North Pacific otariid pinnipeds // Conserv. Physiol. 2021. V. 9 (1). P. coaa134.
  79. Keogh M.J., Thompson D.P., Crouse J.A. Tracking reproductive events: hoof growth and steroid hormone concentrations in hair and hoof tissues in moose (Alces alces) // Conserv. Physiol. 2023. V. 11 (1). P. coad097.
  80. Kirschbaum C. What is hair cortisol analysis and how can it aid endocrinologists? // Exp. Rev. Endocrinol. Metabol. 2024. V. 19 (6). P. 467–468.
  81. Koren L., Mokady O., Karaskov T. et al. A novel method using hair for determining hormonal levels in wildlife // Anim. Behav. 2002. V. 63 (2). P. 403–406.
  82. Koren L., Mokady O., Geffen E. Social status and cortisol levels in singing rock hyraxes // Horm. Behav. 2008. V. 54 (1). P. 212–216.
  83. Lafferty D.J., Laudenslager M.L., Mowat G. et al. Sex, diet, and the social environment: factors influencing hair cortisol concentration in free-ranging black bears (Ursus americanus) // PLoS One. 2015. V. 10 (11). P. e0141489.
  84. Lamon T.K., Lidbury J., Guadiano P. et al. Assessing chronic stress in cats: measuring hair cortisol using an ELISA // J. Vet. Diagn. Invest. 2025. V. 37 (2). P. 217–222.
  85. Lanci A., Mariella J., Ellero N. et al. Hair cortisol and DHEA-S in foals and mares as a retrospective picture of feto-maternal relationship under physiological and pathological conditions // Animals (Basel). 2022. V. 12 (10). P. 1266.
  86. Laudenslager M.L., Jorgensen M.J., Fairbanks L.A. Developmental patterns of hair cortisol in male and female nonhuman primates: lower hair cortisol levels in vervet males emerge at puberty // Psychoneuroendocrinology. 2012. V. 37 (10). P. 1736–1739.
  87. Lavergne S.G., Peers M.J.L., Mastromonaco G. et al. Hair cortisol as a reliable indicator of stress physiology in the snowshoe hare: influence of body region, sex, season, and predator-prey population dynamics // Gen. Comp. Endocrinol. 2020. V. 294. P. 113471.
  88. Lazarus M., Sergiel A., Ferenčaković M. et al. Stress and reproductive hormones in hair associated with contaminant metal(loid)s of European brown bear (Ursus arctos) // Chemosphere. 2023. V. 325. P. 138354.
  89. Liu C.H., Doan S.N. Innovations in biological assessments of chronic stress through hair and nail cortisol: conceptual, developmental, and methodological issues // Dev. Psychobiol. 2019. V. 61 (3). P. 465–476.
  90. Lockwood S.A., Kattesh H.G., Rhinehart J.D. et al. Relationships among temperament, acute and chronic cortisol and testosterone concentrations, and breeding soundness during performance testing of Angus bulls // Theriogenology. 2017. V. 89. P. 140–145.
  91. Lopez M., Seidl A., Phillips K.A. Cortisol levels across the lifespan in common marmosets (Callithrix jacchus) // Am. J. Primatol. 2024. V. 86 (4). P. e23597.
  92. Lutz C.K., Coleman K., Worlein J.M. et al. Factors influencing alopecia and hair cortisol in rhesus macaques (Macaca mulatta) // J. Med. Primatol. 2016. V. 45. P. 180–188.
  93. Macbeth B.J., Cattet M.R.L., Stenhouse G.B. et al. Hair cortisol concentration as a noninvasive measure of long-term stress in free-ranging grizzly bears (Ursus arctos): considerations with implications for other wildlife // Can. J. Zool. 2010. V. 88. P. 935–949.
  94. Macbeth B.J., Cattet M.R., Obbard M.E. et al. Evaluation of hair cortisol concentration as a biomarker of long-term stress in free-ranging polar bears // Wildl. Soc. Bull. 2012. V. 36 (4). P. 747–758.
  95. Madslien K., Stubsjøen S.M., Viljugrein H. et al. Hair cortisol сoncentration and body mass in moose (Alces alces) infested with deer keds (Lipoptena cervi) // J. Wildl. Dis. 2020. V. 56 (3). P. 687–692.
  96. Malcolm K.D., McShea W.J., van Deelen T.R. et al. Analyses of fecal and hair glucocorticoids to evaluate short-and long-term stress and recovery of Asiatic black bears (Ursus thibetanus) removed from bile farms in China // Gen. Comp. Endocrinol. 2013. V. 185. P. 97–106.
  97. Marti S., Meléndez D.M., Pajor E.A. et al. Effect of band and knife castration of beef calves on welfare indicators of pain at three relevant industry ages: II. Chronic pain // J. Anim. Sci. 2017. V. 95. P. 4367–4380.
  98. Martin J.G., Réale D. Animal temperament and human disturbance: implications for the response of wildlife to tourism // Behav. Process. 2008. V. 77 (1). P. 66–72.
  99. Mastromonaco G.F., Gunn K., McCurdy-Adams H. et al. Validation and use of hair cortisol as a measure of chronic stress in eastern chipmunks (Tamias striatus) // Conserv. Physiol. 2014. V. 2 (1). P. cou055.
  100. Mazzola S.M., Colombani C., Pizzamiglio G. et al. Do you think i am living well? A four-season hair cortisol analysis on leisure horses in different housing and mana- gement conditions // Animals (Basel). 2021. V. 11 (7). P. 2141.
  101. Maxwell N., Buchanan C., Evans N. Hair cortisol concentrations, as a measure of chronic activity within the hypothalamic-pituitary-adrenal axis, is elevated in dogs farmed for meat, relative to pet dogs, in South Korea // Anim. Welfare. 2019. V. 28 (4). P. 389–395.
  102. Medill S.A., Janz D.M., McLoughlin P.D. Hair cortisol concentrations in feral horses and the influence of physiological and social factors // Animals (Basel). 2023a. V. 13 (13). P. 2133.
  103. Medill S.A., Janz D.M., McLoughlin P.D. Hair cortisol and testosterone concentrations in relation to maturity and breeding status of male feral horses // Animals (Basel). 2023b. V. 13 (13). P. 2129.
  104. Mesarcova L., Kottferova J., Skurkova L. et al. Analysis of cortisol in dog hair – a potential biomarker of chronic stress: a review // Veterinární medicína. 2017. V. 62 (7). P. 363–376.
  105. Meyer J.S., Novak M.A. Minireview: hair cortisol: a novel biomarker of hypothalamic-pituitary-adrenocortical activity // Endocrinology. 2012. V. 153. P. 4120–4127.
  106. Mijar S., van der Meer F., Hodder A. et al. Behavioral activity patterns but not hair cortisol concentrations explain steers’ transition-related stress in the first 6 weeks in the feedlot // J. Anim. Sci. 2024. V. 102. P. skae236.
  107. Montillo M., Comin A., Corazzin M. et al. The effect of temperature, rainfall, and light conditions on hair cortisol concentrations in newborn foals // J. Equine Vet. Sci. 2014. V. 34. P. 774–778.
  108. Mormède P., Andanson S., Aupérin B. et al. Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare // Physiol. Behav. 2007. V. 92. P. 317–339.
  109. Moya D., Schwartzkopf-Genswein K.S., Veira D.M. Standardization of a non-invasive methodology to measure cortisol in hair of beef cattle // Livest. Sci. 2013. V. 158 (1–3). P. 138–144.
  110. Naidenko S.V., Alekseeva G.S., Klyuchnikova P.S., Erofeeva M.N. Application of felid hair for non-invasive tracking of animal reproductive status and adrenal activity // Animals (Basel). 2022. V. 12 (20). P. 2792.
  111. Nedić S., Pantelić M., Vranješ-Durić S. et al. Cortisol concentrations in hair, blood and milk of Holstein and Busha cattle // Slovenian Vet. Res. 2017. V. 54 (4). P. 163–172.
  112. Nicholson S.L., Meredith J.E. Should stress management be part of the clinical care provided to chronically ill dogs? // J. Vet. Behav. 2015. V. 10 (6). P. 489–495.
  113. Novak M.A., Hamel A.F., Coleman K. et al. Hair loss and hypothalamic-pituitary-adrenocortical axis activity in captive rhesus macaques (Macaca mulatta) // J. Am. Assoc. Lab. Anim. Sci. 2014. V. 53. P. 261–266.
  114. Olvera-Maneu S., Carbajal A., Gardela J., Lopez-Bejar M. Hair cortisol, testosterone, dehydroepiandrosterone sulfate and their ratios in stallions as a retrospective measure of hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes activity: exploring the influence of seasonality // Animals (Basel). 2021. V. 11 (8). P. 2202.
  115. Otten W., Heimbürge S., Kanitz E., Tuchscherer A. It’s getting hairy – external contamination may affect the validity of hair cortisol as an indicator of stress in pigs and cattle // Gen. Comp. Endocrinol. 2020. V. 295. P. 113531.
  116. Ouschan C., Kuchar A., Möstl E. Measurement of cortisol in dog hair: a noninvasive tool for the diagnosis of hypercortisolism // Vet. Dermatol. 2013. V. 24 (4). P. 428–431.
  117. Park S.H., Kim S.A., Shin N.S., Hwang C.Y. Elevated cortisol content in dog hair with atopic dermatitis // Jap. J. Vet. Res. 2016. V. 64 (2). P. 123–129.
  118. Pereira P., Fandos Esteruelas N., Nakamura M. et al. Hair cortisol concentration reflects the life cycle and management of grey wolves across four European populations // Sci. Rep. 2022. V. 12 (1). P. 5697.
  119. Peric T., Comin A., Corazzin M. et al. Hair cortisol concentrations in Holstein-Friesian and crossbreed F1 heifers // J. Dairy Sci. 2013. V. 96 (5). P. 3023–3027.
  120. Peric T., Comin A., Corazzin M. et al. Relocation and hair cortisol concentrations in New Zealand white rabbits // J. App. Anim. Welf. Sci. 2017. V. 20 (1). P. 1–8.
  121. Peric T., Comin A., Corazzin M. et al. Hair cortisol concentrations in New Zealand white rabbits subjected to surgery // Anim. Welf. 2018. V. 27 (1). P. 13–20.
  122. Placci M., Marliani G., Sabioni S. et al. Natural horse boarding vs traditional stable: a comparison of hormonal, hematological and immunological parameters // J. Appl. Anim. Welf. Sci. 2020. V. 23 (3). P. 366–377.
  123. Pokharel S.S., Yoneda H., Yanagi M. et al. The tail-tale of stress: an exploratory analysis of cortisol levels in the tail-hair of captive Asian elephants // PeerJ. 2021. V. 9. P. e10445.
  124. Poudel S., Fike J.H., Pent G.J. Hair cortisol as a measure of chronic stress in ewes grazing either hardwood silvopastures or open pastures // Agronomy. 2022. V. 12 (7). P. 1566.
  125. Prandi A., Peric T., Corazzin M. et al. A first survey on hair cortisol of an Alpine ibex (Capra ibex ibex) population // Ani. Sci. Pap. Rep. 2018. V. 36 (1). P. 57–74.
  126. Qin D.-D., Rizak J., Feng X.-L. et al. Social rank and cortisol among female rhesus macaques (Macaca mulatta) // Zool. Res. 2013. V. 34. P. E42–E49.
  127. Qin D., Rizak J., Chu X. et al. A spontaneous depressive pattern in adult female rhesus macaques // Sci. Rep. 2015. V. 5. P. 11267.
  128. Rakic F., Fernandez-Aguilar X., Pruvot M. et al. Variation of hair cortisol in two herds of migratory caribou (Rangifer tarandus): implications for health monitoring // Conserv. Physiol. 2023. V. 11 (1). P. coad030.
  129. Rakotoniaina J.H., Kappeler P.M., Kaesler E. et al. Hair cortisol concentrations correlate negatively with survival in a wild primate population // BMC Ecol. 2017. V. 17 (1). P. 30.
  130. Roffler G.H., Karpovich S., Charapata P., Keogh M.J. Validation and measurement of physiological stress and reproductive hormones in wolf hair and claws // Wildl. Soc. Bull. 2022. V. 46 (4). P. 1–19.
  131. Roth L.S., Faresjö Å., Theodorsson E., Jensen P. Hair cortisol varies with season and lifestyle and relates to human interactions in German shepherd dogs // Sci. Rep. 2016. V. 6 (1). P. 19631.
  132. Rothlin-Zachrisson N., Röcklinsberg H., Jettel E. et al. Hair cortisol concentrations in clipped and combed hair and associations with characteristics, health status and stress in domestic cats // Sci. Rep. 2024. V. 14. P. 21846.
  133. Russell E., Koren G., Rieder M., van Uum S. Hair cortisol as a biological marker of chronic stress: current status, future directions and unanswered questions // Psychoneuroendocrinology. 2012. V. 37. P. 589–601.
  134. Sadok I., Ożga K., Klich D. et al. A validated LC-MS/MS method for simultaneous determination of key glucocorticoids in animal hair for applications in conservation biology // Sci. Rep. 2023. V. 13 (1). P. 23089.
  135. Sadoughi B., Lacroix L., Berbesque C. et al. Effects of social tolerance on stress: hair cortisol concentrations in the tolerant Tonkean macaques (Macaca tonkeana) and the despotic long-tailed macaques (Macaca fascicularis) // Stress. 2021. V. 24 (6). P. 1033–1041.
  136. Saluti G., Ricci M., Castellani F. et al. Determination of hair cortisol in horses: comparison of immunoassay vs LC-HRMS/MS // Anal. Bioanal. Chem. 2022. V. 414. P. 8093–8105.
  137. Sandoval-Herrera N.I., Mastromonaco G.F., Becker D.J. et al. Inter- and intra-specific variation in hair cortisol concentrations of Neotropical bats // Conserv. Physiol. 2021. V. 9 (1). P. coab053.
  138. Sauveroche M., Henriksson J., Theodorsson E. et al. Hair cortisol in horses (Equus caballus) in relation to management regimes, personality, and breed // J. Vet. Behav. 2020. V. 37. P. 1–7.
  139. Sawyer G., Webster D., Narayan E. Measuring wool cortisol and progesterone levels in breeding maiden Australian merino sheep (Ovis aries) // PLoS One. 2019. V. 14 (4). P. e0214734.
  140. Sawyer G., Fox D.R., Narayan E. Pre- and post-partum variation in wool cortisol and wool micron in Australian merino ewe sheep (Ovis aries) // PeerJ. 2021. V. 9. P. e11288.
  141. Sotohira Y., Suzuki K., Sano T. et al. Stress assessment using hair cortisol of kangaroos affected by the lumpy jaw disease // J. Vet. Med. Sci. 2017. V. 79. P. 852–854.
  142. Schell C.J., Young J.K., Lonsdorf E.V. et al. Investigation of techniques to measure cortisol and testosterone concentrations in coyote hair // Zoo Biol. 2017. V. 36 (3). P. 220–225.
  143. Schilling A.K., Mazzamuto M.V., Romeo C. A review of non-invasive sampling in wildlife disease and health research: what’s new? // Animals (Basel). 2022. V. 12 (13). P. 1719.
  144. Schroers M., Goossens J., Zablotski Y., Meyer-Lindenberg A. Fur cortisol in french bulldogs with different manifestations of brachycephalic obstructive airway syndrome // Animals (Basel). 2024. V. 14 (7). P. 1060.
  145. Schubach K.M., Cooke R.F., Brandão A.P. et al. Impacts of stocking density on development and puberty attainment of replacement beef heifers // Animal. 2017. V. 11 (12). P. 2260–2267.
  146. Sharma A., Umapathy G., Kumar V., Phillips C.J.C. Hair cortisol in sheltered cows and its association with other welfare indicators // Animals (Basel). 2019. V. 9 (5). P. 248.
  147. Sheriff M.J., Dantzer B., Delehanty B. et al. Measuring stress in wildlife: techniques for quantifying glucocorticoids // Oecologia. 2011. V. 166. P. 869–887.
  148. Shimamoto T. Validation and utility of hair cortisol analysis as a measure of long-term physiological stress in the Pallas’s squirrel Callosciurus erythraeus // Gen. Comp. Endocrinol. 2022. V. 316. P. 113944.
  149. Sierra Garcia M., Domínguez Hernández Y.M., De la Peña Moctezuma A. et al. Relationship between chronic diseases, hair cortisol concentration and welfare of housed dairy goats // Austral. J. Vet. Sci. 2024. V. 56 (3). P. 105–114.
  150. Silva P.R., Lobeck-Luchterhand K.M., Cerri R.L. et al. Effects of prepartum stocking density on innate and adaptive leukocyte responses and serum and hair cortisol concentrations // Vet. Immunol. Immunopathol. 2016. V. 169. P. 39–46.
  151. Stubsjøen S.M., Bohlin J., Dahl E. et al. Assessment of chronic stress in sheep (part I): the use of cortisol and cortisone in hair as non-invasive biological markers // Small Rumin. Res. 2015. V. 132. P. 25–31.
  152. Tallo-Parra O., Manteca X., Sabes-Alsina M. et al. Hair cortisol detection in dairy cattle by using EIA: protocol validation and correlation with faecal cortisol metabolites // Animal. 2015. V. 9 (6). P. 1059–1064.
  153. Tallo-Parra O., Lopez-Bejar M., Carbajal A. et al. Acute ACTH-induced elevations of circulating cortisol do not affect hair cortisol concentrations in calves // Gen. Comp. Endocrinol. 2017. V. 240. P. 138–142.
  154. Tallo-Parra O., Carbajal A., Monclús L. et al. Hair cortisol and progesterone detection in dairy cattle: interrelation with physiological status and milk production // Domest. Anim. Endocrinol. 2018. V. 64. P. 1–8.
  155. Tamminen L.M., Keeling L.J., Svensson A. et al. Unraveling the complexity to observe associations between welfare indicators and hair cortisol concentration in dairy calves // Front. Anim. Sci. 2021. V. 2. P. 84.
  156. Tennenhouse E.M., Putman S., Boisseau N.P., Brown J.L. Relationships between steroid hormones in hair and social behaviour in ring-tailed lemurs (Lemur catta) // Primates. 2017. V. 58. P. 199–209.
  157. Terwissen C.V., Mastromonaco G.F., Murray D.L. Influence of adrenocorticotrophin hormone challenge and external factors (age, sex, and body region) on hair cortisol concentration in Canada lynx (Lynx canadensis) // Gen. Comp. Endocrinol. 2013. V. 194. P. 162–167.
  158. Trevisan C., Montillo M., Prandi A. et al. Hair cortisol and dehydroepiandrosterone concentrations in naturally Taenia solium infected pigs in Tanzania // Gen. Comp. Endocrinol. 2017. V. 246. P. 23–28.
  159. Uetake K., Morita S., Sakagami N. et al. Hair cortisol levels of lactating dairy cows in cold-and warm-temperate regions in Japan // Anim. Sci. J. 2018. V. 89 (2). P. 494–497.
  160. van der Laan J.E., Vinke C.M., Arndt S.S. Evaluation of hair cortisol as an indicator of long-term stress responses in dogs in an animal shelter and after subsequent adoption // Sci. Rep. 2022. V. 12 (1). P. 5117.
  161. van der Walt M., Neuman-Lee L.A., Terletzky P.A. et al. Measuring adrenal and reproductive hormones in hair from Southern Beaufort Sea polar bears (Ursus maritimus) // Gen. Comp. Endocrinol. 2021. V. 310. P. 113807.
  162. Ventrella D., Elmi A., Barone F. et al. Hair testosterone and cortisol concentrations in pre-and post-rut roe deer bucks: correlations with blood levels and testicular morphometric parameters // Animals (Basel). 2018. V. 8. P. e113.
  163. Vesel U., Pavič T., Ježek J. et al. Welfare assessment in dairy cows using hair cortisol as a part of monitoring protocols // J. Dairy Res. 2020. V. 87 (S1). P. 72–78.
  164. Wiechers D.H., Brunner S., Herbrandt S. et al. Analysis of hair cortisol as an indicator of chronic stress in pigs in two different farrowing systems // Front. Vet. Sci. 2021. V. 8. P. 605078.
  165. Wojtaś J. Hair cortisol levels in cats with and without behavioural problems // J. Feline Med. Surg. 2023. V. 25 (2). P. 1098612X221150624.
  166. Wojtaś J., Garbiec A., Karpiński M. et al. Are hair cortisol levels of humans, cats, and dogs from the same household correlated? // Animals (Basel). 2022. V. 12 (11). P. 1472.
  167. Wojtaś J., Garbiec A., Karpiński M. et al. A claws and hair cortisol levels correlation in cats // Medycyna Weterynaryjna. 2023. V. 79 (8). P. 3413–3416.
  168. Wojtaś J., Czyżowski P., Kaszycka K. et al. The impact of environmental enrichment on the cortisol level of shelter cats // Animals (Basel). 2024. V. 14 (9). P. 1392.
  169. Yamanashi Y., Morimura N., Mori Y. et al. Cortisol analysis of hair of captive chimpanzees (Pan troglodytes) // Gen. Comp. Endocrinol. 2013. V. 194. P. 55–63.
  170. Yamanashi Y., Teramoto M., Morimura N. et al. Effects of relocation and individual and environmental factors on the longterm stress levels in captive chimpanzees (Pan troglodytes): monitoring hair cortisol and behaviors // PLoS One. 2016a. V. 11. P. e0160029.
  171. Yamanashi Y., Teramoto M., Morimura N. et al. Analysis of hair cortisol levels in captive chimpanzees: effect of various methods on cortisol stability and variability // MethodsX. 2016b. V. 3. P. 110–117.
  172. Yamanashi Y., Teramoto M., Morimura N. et al. Social relationship and hair cortisol level in captive male chimpanzees (Pan troglodytes) // Primates. 2018. V. 59. P. 145–152.
  173. Yan Z., Liu X., Liu H. et al. Assessment of stress levels and reproductive condition in giant pandas: insights from hair, faecal and saliva samples // Conserv. Physiol. 2024. V. 12 (1). P. coae044.
  174. Zenth F., Corlatti L., Giacomelli S. et al. Hair cortisol concentration as a marker of long-term stress: sex and body temperature are major determinants in wild-living Alpine marmots // Mamm. Biol. 2022. V. 102. P. 2083–2089.
  175. Zoratti A., Corazzin M., Bodas R. et al. Wool cortisol concentrations trends in the lamb from birth to slaughter // Small Rum. Res. 2023. V. 224. P. 106988.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».