Сhannelized Karyotype Evolution of the Common Shrew Sorex araneus (Mammalia)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A model of channelized evolution of the S. araneus L. karyotype in the processes of replacement of ten pairs of acrocentric chromosomes by five pairs of metacentric chromosomes has been proposed. The channelized evolution of the karyotype arises due to the inability of Rb fusions with incomplete (monobrachial) homology to spread in the same population. Therefore, an Rb fusion, due to some random event first appearing in a population, largely determines the further evolution of the karyotype of that population. After the third replacement of acrocentric chromosomes by metacentric ones, the replacement of the remaining 6 pairs of acrocentrics allows the formation of no more than three karyotypes with five diagnostic metacentrics, which can be predicted, regardless of which rearrangements result in metacentric chromosomes (Rb fusion or WART). The channelized karyotypic evolution greatly increases the likelihood of parallel karyotype formation, in cases where evolution begins with identical metacentrics in geographically distant populations. An example of parallel evolution that began with the gk metacentric is the identical karyotypes of the new Mogilev race from Belarus and the Tomsk race from Western Siberia. The evolution of Eastern European chromosomal races shows hybrid fusion processes between the karyotypes of the East European karyotypic group (EEKG) and the West European karyotypic group (WEKG).

Авторлар туралы

V. Orlov

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: elyacherena.16@gmail.com
Russia, Moscow

I. Kryshchuk

Scientific and Practical Center for Bioresources, National Academy of Sciences of Belarus

Email: elyacherena.16@gmail.com
Republic of Belarus, Minsk

E. Cherepanova

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: elyacherena.16@gmail.com
Russia, Moscow

Yu. Borisov

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: elyacherena.16@gmail.com
Russia, Moscow

Әдебиет тізімі

  1. Берг Л.С. Номогенез, или эволюция на основе закономерностей // Теории эволюции, Гл. 5. Петроград: Academia, 1922. С. 82–94.
  2. Берг Р.Л. Генетика и эволюция. Избранные труды. Новосибирск: Наука, 1993. 283 с.
  3. Вавилов Н.И. Закон гомологических рядов изменчивости // Докл. на III Всерос. селекционном съезде в г. Саратове 4 июня 1920. 16 с.
  4. Воронцов Н.Н. Значение изучения хромосомных наборов для систематики млекопитающих // Бюл. МОИП. Отд биол. 1958. Т. 63. № 2. С. 5–86.
  5. Дарвин Ч. Происхождение видов путем естественного отбора. М.: Просвещение, 1987. 383 с.
  6. Жданова Н.С., Рогозина Ю.И., Минина Ю.М. и др. Распределение теломерной ДНК в хромосомах обыкновенной бурозубки (Sorex araneus, Eulipotyphla) // Цитология. 2009. Т. 51. № 7. С. 577–584.
  7. Иваницкая Е.Ю. Хромосомные числа и краткие морфологические характеристики кариотипов млекопитающих / Ред. В.Н. Орлов, Н.Ш. Булатова. Сравнительная цитогенетика и кариосистематика млекопитающих. М.: Наука, 1983. С. 171–403.
  8. Маркова А.К., Пузаченко А.Ю. Комплексы млекопитающих максимальной стадии последнего оледенения (Last Glacial Maximum – LGM) (<=24 – >=17 тыс. л. н.) // Эволюция экосистем Европы при переходе от плейстоцена к голоцену (24–8 тыс. л. н.) / Ред. А.К. Маркова, Т. ван Кольфсхотен. М.: КМК, 2008. С. 91–116.
  9. Орлов В.Н. Кариосистематика млекопитающих. М.: Наука, 1974. 207 с.
  10. Орлов В.Н., Козловский А.И., Балакирев А.Е., Борисов Ю.М. Эндемизм хромосомных рас обыкновенной бурозубки Sorex araneus L. и возможность сохранения рефугиумов в области покровного оледенения Поздневалдайской эпохи // Докл. РАН. 2007. Т. 416. № 6. С. 727–730.
  11. Орлов В.Н., Козловский А.И., Балакирев А.Е., Борисов Ю.М. Процессы фиксации метацентрических хромосом в популяциях обыкновенной бурозубки Sorex araneus L. Восточной Европы // Генетика. 2008. Т. 44. № 5. 581–593.
  12. Орлов В.Н., Черепанова Е.В., Кривоногов Д.М. и др. Зональные и рефугиальные этапы в эволюции видов: пример обыкновенной бурозубки, Sorex araneus L. (Soricidae, Soricomorpha) // Успехи соврем. биол. 2017. Т. 138. № 2. С. 119–134.
  13. Поляков А.В., Панов В.В., Ладыгина Т.Ю. и др. Хромосомная эволюция обыкновенной бурозубки Sorex araneus L. в послеледниковое время на Южном Урале и в Сибири // Генетика. 2001. Т. 37. № 4. С. 448–455.
  14. Шмальгаузен И.И. Проблемы дарвинизма. Л.: Наука, 1969. 493 с.
  15. Andersson A.-C., Alström-Rapaport C., Fredga K. Lack of mitochondrial DNA divergence between chromosome races of the common shrew, Sorex araneus, in Sweden. Implications for interpreting chromosomal evolution and colonization history // Mol. Ecol. 2005. V. 14. P. 2703–2716.
  16. Baker R.J., Bickham J.W. Karyotypic evolution in bats: evidence of extensive and conservative chromosomal evolution in closely related taxa // Syst. Zool. 1980. V. 29 (1). P. 239–254.
  17. Baker R.J., Bickham J.W. Speciation by monobrachial centric fusions // PNAS USA. 1986. V. 83. P. 8245–8248.
  18. Bickham J.W., Baker R.J. Canalization model of chromosomal evolution // Models and methodologies in evolutionary theory / Bull. Carnegie Museum of Natural History. 1979. V. 13. P. 70–84.
  19. Biltueva L.S., Perelman P.L., Polyakov A.V. et al. Comparative chromosome analysis in three Sorex species: S. raddei, S. minutus and S. caecutiens / Acta Theriol. 2000. V. 45. Suppl. 1. P. 119–130.
  20. Borisov Yu.M., Cherepanova E.V., Orlov V.N. A wide hybrid zone of chromosome races of the common shrew, Sorex araneus Linnaeus, 1758 (Mammalia), between the Dnieper and Berezina Rivers (Belarus) // Comp. Cytogen. 2010. V. 3 (2). P. 195–201.
  21. Borisov Yu.M., Kryshchuk I.A., Cherepanova E.V. et al. Chromosomal polymorphism of populations of the common shrew, Sorex araneus L., in Belarus // Acta Theriol. 2014. V. 59 (2). P. 243–249.
  22. Borisov Yu.M., Gaiduchenko H.S., Cherepanova E.V. et al. The clinal variation of metacentric frequency in the populations of the common shrew, Sorex araneus L., in the Dnieper and Pripyat interfluve // Mamm. Res. 2016. V. 61. P. 269–277.
  23. Borisov Yu.M., Kryshchuk I.A., Gaiduchenko H.S. et al. Karyotypic differentiation of populations of the common shrew Sorex araneus L. (Mammalia) in Belarus // Comp. Cytogen. 2017. V. 11 (2). P. 359–373.
  24. Brünner H., Turni H., Kapischke H-J. New Sorex araneus karyotypes from Germany and the postglacial recolonization of central Europe // Acta Theriol. 2002. V. 47 (3). P. 277–293.
  25. Bulatova N.S., Biltueva L.S., Pavlova S.V. Chromosomal differentiation in the common shrew and related species // Shrews, chromosomes and speciation (Cambridge studies in morphology and molecules: new paradigms in evolutionary bio) / Eds. J. Searle, P. Polly, J. Zima. Chapter 5. Cambridge: Cambridge Univ. Press, 2019. P. 134–184.
  26. Bulatova N., Searle J.B., Bystrakova N. et al. The diversity of chromosome races in Sorex araneus from European Russia // Acta Theriol. 2000. V. 45 (Suppl. 1). P. 33–46.
  27. Capanna E. Robertsonian numerical variation in animal speciation: Mus musculus an emblematic model // Mechanism of Speciation / Ed. C. Barigozzi. New York: Alan Liss, 1982. P. 155–177.
  28. Capanna E., Castiglia R. Chromosomes and speciation in Mus musculus domesticus // Cytogen. Gen. Res. 2004. V. 105. P. 375–384.
  29. Capanna E., Civitelli M.V., Cristaldi M. Chromosomal rearrangement, reproductive isolation and speciation in mammals. The case of Mus musculus // Bolletino di Zool. 1977. V. 44. P. 213–246.
  30. Cucchi T., Vigne J.D., Auffray J.-C. First occurrence of the house mouse (Mus musculus domesticus Schwarz et Schwarz, 1943) in the western Mediterranean: a zooarchaeological revision of sub-fossil house mouse occurrences // Biol. J. Linn. Soc. 2005. V. 84. P. 429–445.
  31. Cytotaxonomy and vertebrate evolution / Eds A.B. Chiarelli, E. Capanna. L.: Academic Press, 1973. 783 p.
  32. Fedyk S., Pavlova S.V., Chętnicki W., Searle J.B. Chromosomal hybrid zones // Shrews, chromosomes and speciation // Cambridge studies in morphology and molecules: new paradigms in evolutionary bio / Eds J. Searle, P. Polly, J. Zima. Chapter 8. Cambridge: Cambridge Univ. Press, 2019. P. 271–312.
  33. Fedyk S., Banaszek A., Chętnicki W. et al. Reassessment of the range of the Drnholec race: studies on meiosis in Sorex araneus hybrids // Acta Theriol. 2000. V. 45 (Suppl. 1). P. 59–67.
  34. Ford C.E., Hamerton J.L. A colchicine hypotonic citrate, squash sequence for mammalian chromosomes // Stain Technol. 1956. V. 31. P. 247–251.
  35. Fredga K. The chromosome races of Sorex araneus in Scandinavia // Hereditas. 1996. V. 125. P. 123–135.
  36. Fredga K. Reconstruction of the postglacial colonization of Sorex araneus into northern Scandinavia based on karyotype studies, and the subdivision of the Abisko race into three // Rus. J. Theriol. 2007. V. 6. P. 85–96.
  37. Fredga K., Nawrin J. Karyotype variability in Sorex araneus L. (Insectivora, Mammalia) // Chrom. Today. 1977. V. 6. P. 153–161.
  38. Garagna S., Page J., Fernandez-Donoso R. The Robertsonian phenomenon in the house mouse: mutation, meiosis and speciation // Chromosoma. 2014. V. 123. 529–544.
  39. Hausser J., Fedyk S., Fredga K. et al. Definition and nomenclature of chromosome races of Sorex araneus // Folia Zoologica. 1994. V. 43 (Suppl. 1). P. 1–9.
  40. Horn A., Basset P., Yannic G. et al. Chromosomal rearrangements do not seem to affect the gene flow in hybrid zones between karyotypic races of the common shrew (Sorex araneus) // Evolution. 2012. V. 66. P. 882–889.
  41. Hsu T.C., Benirschke K. An atlas of mammalian chromosomes. V. 1–10. Berlin–Heidelberg–New York: Springer, 1967–1977.
  42. Huxley J.S. Evolutionary process and taxonomy, with special reference to grades // Uppsala Univ. Arsskr. 1958. № 6. P. 21–39.
  43. Král B., Radjabli S.I. Banding patterns and Robertsonian fusion in the western Siberian population of Sorex araneus (Insectivora, Soricidae) // Zoologické Listy. 1974. V. 23. P. 217–227.
  44. Kryshchuk I.A., Orlov V.N., Cherepanova E.V., Borisov Yu.M. Unusual chromosomal polymorphism of the common shrew, Sorex araneus L., in southern Belarus // Comp. Cytogen. 2021. V. 15 (2). P. 159–169.
  45. Mackiewicz P., Moska M., Wierzbicki H. et al. Evolutionary history and phylogeographic relationships of shrews from Sorex araneus group // PLoS One. 2017. V. 12. P. e0179760.
  46. Meyn S.P., Tweedie R.L. Markov chains and stochastic stability. 2nd ed. L.: Springer-Verlag, 1993. 566 p.
  47. Mishta A.V., Searle J.B., Wójcik J.M. Karyotypic variation of the common shrew Sorex araneus in Belarus, Estonia, Latvia, Lithuania and Ukraine // Acta Theriol. 2000. V. 45 (Suppl. 1). P. 47–58.
  48. Orlov V.N., Kozlovsky A.I., Okulova N.M., Balakirev A.E. Postglacial recolonisation of European Russia by the common shrew Sorex araneus // Rus. J. Theriol. 2007. V. 6 (1). P. 97–104.
  49. Pavlova S.V., Borisov S.A., Timoshenko A.F., Sheftel B.I. “European” race-specific metacentrics in East Siberian common shrews (Sorex araneus): a description of two new chromosomal races, Irkutsk and Zima // Comp. Cytogen. 2017. V. 11. P. 797–806.
  50. Petit J.R., Jouzel J., Raunaud D. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica // Nature. 1999. V. 399. P. 429–436.
  51. Polyakov A.V., Volobouev V.T., Borodin P.M., Searle J.B. Karyotypic races of the common shrew (Sorex araneus) with exceptionally large ranges: the Novosibirsk and Tomsk races of Siberia // Hereditas. 1996. V. 125. P. 109–115.
  52. Ratkiewicz M., Fedyk S., Banaszek A. et al. The evolutionary history of the two karyotypic groups of the common shrew, Sorex araneus, in Poland // Heredity. 2002. V. 88. P. 235–242.
  53. Seabright M. A rapid banding technique for human chromosomes // Lancet. 1971. V. 11. P. 971–972.
  54. Searle J.B. Three new karyotypic races of the common shrew Sorex araneus (Mammalia: Insectivora) and a phylogeny // Syst. Zool. 1984. V. 33. P. 184–194.
  55. Searle J.B. Karyotypic variation and evolution in the common shrew // Kew chromosome conference III / Ed. P.E. Brandham. L.: HMSO, 1988. P. 97–107.
  56. Searle J.B., Wójcik J.M. Chromosomal evolution: the case of Sorex araneus // Evolution of shrews / Ed. J.M. Wójcik, M. Wolsan, M. Białowieza. Poland: Mammal Research Institute, 1998. P. 219–268.
  57. Searle J.B., Fedyk S., Fredga K. et al. Nomenclature for the chromosomes of the common shrew (Sorex araneus) // Comp. Cytogenet. 2010. V. 4. P. 87–96.
  58. Shchipanov N.A., Pavlova S.V. Density-dependent processes determine the distribution of chromosomal races of the common shrew Sorex araneus (Lipotyphla, Mammalia) // Mamm. Res. 2017. V. 62. P. 267–282.
  59. Shrews, chromosomes and speciation // Cambridge studies in morphology and molecules: new paradigms in evolutionary bio / Eds J. Searle, P. Polly, J. Zima. Cambridge: Cambridge Univ. Press, 2019. 475 p.
  60. Volobouev V.T. Phylogenetic relationships of the Sorex araneus-arcticus species complex (Insectivora, Soricidae) based on high-resolution chromosome analysis // J. Heredity. 1989. V. 80. P. 284–290.
  61. Volobouev V., Catzeflis F. Mechanism of chromosomal evolution in three European species of the Sorex araneus-arcticus group (Insectivora: Soricidae) // Zeitschrift für Zool. Syst. Evol.-Forschung. 1989. V. 27. P. 252–262.
  62. White M.J.D. Chain processes in chromosomal speciation // Syst. Zool. 1978. 27 (3). P. 285–298.
  63. White T.A., Bordewich M., Searle J.B. A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems // Syst. Biol. 2010. V. 59. P. 262–276.
  64. White T.A., Wójcik, J.M., Searle J.B. Phylogenetic relationships of chromosomal races // Shrews, chromosomes and speciation (Cambridge studies in morphology and molecules: new paradigms in evolutionary bio) / Eds. J. Searle, P. Polly, J. Zima. Chapter 6. Cambridge: Cambridge Univ. Press, 2019. P. 186–216.
  65. Wójcik J.M., Searle J.B. The chromosome complement of Sorex granarius – the ancestral karyotype of the common shrew (Sorex araneus)? // Heredity. 1988. V. 61. P. 225–229.
  66. Wójcik J.M. Chromosome races of the common shrew Sorex araneus in Poland: a model of karyotype evolution // Acta Theriol. 1993. V. 38. P. 315–338.
  67. Wójcik J.M., Ratkiewicz M., Searle J.B. Evolution of the common shrew, Sorex araneus: chromosomal and molecular aspects // Acta Theriol. 2002. V. 47 (Suppl. 1). P. 139–167.
  68. Zima J., Kral B. Karyotypes of European mammals I–III // Acta Sci. Nat. Brno. 1984. V. 18 (7). P. 1–51. (8). P. 1–62. (9). P. 1–51.

Қосымша файлдар


© В.Н. Орлов, И.А. Крищук, Е.В. Черепанова, Ю.М. Борисов, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>