Multi-Component Complexes of Microfungi Metabolites Containing in Plants of the Rosaceae Family
- Authors: Burkin A.A.1, Kononenko G.P.1
-
Affiliations:
- All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology – Branch of the Federal Scientific Center – Skryabin and Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, Russian Academy of Sciences
- Issue: Vol 145, No 5 (2025)
- Pages: 504-509
- Section: CHRONICLE
- Submitted: 11.02.2026
- Published: 15.10.2025
- URL: https://journals.rcsi.science/0042-1324/article/view/382129
- DOI: https://doi.org/10.7868/S3034634725050087
- ID: 382129
Cite item
Full Text
Abstract
Modern science considers lower and higher plants as stable associations with communities of microscopic fungi that are capable of synthesizing physiologically active substances. A survey of forest biocenoes plants from the Rosaceae family – cloudberries, stone berries, strawberries and raspberries – showed that the leaves and fruits have a set of 16 analyzed metabolites with the highest accumulation of diacetoxyscirpenol (1970–12800 ng/g), PR toxin (610–11300 ng/g) and background T-2 toxin (60–69 ng/g). For the remaining analytes, a wide range of quantities was found to vary – from units to thousands of ng/g; leaf petioles were distinguished by a reduced content of all components.
Keywords
About the authors
A. A. Burkin
All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology – Branch of the Federal Scientific Center – Skryabin and Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, Russian Academy of SciencesMoscow, Russia
G. P. Kononenko
All-Russian Research Institute of Veterinary Sanitation, Hygiene and Ecology – Branch of the Federal Scientific Center – Skryabin and Kovalenko All-Russian Research Institute of Experimental Veterinary Medicine, Russian Academy of Sciences
Email: kononenkogp@mail.ru
Moscow, Russia
References
- Буркин А.А., Кононенко Г.П. Вторичные метаболиты микромицетов в растениях семейства Fabaceae родов Galega, Lupinus, Medicago, Melilotus // Изв. РАН. Серия биол. 2018. № 3. С. 267–274. https://doi.org/10.7868/S0002332918030037
- Буркин А.А., Кононенко Г.П. Вторичные метаболиты микромицетов в растениях семейства Brassicaceae (Cruciferae) // Изв. РАН. Серия биол. 2022. № 3. С. 237–245. 10.31857/S1026347022030052' target='_blank'>https://doi.org/doi: 10.31857/S1026347022030052
- Буркин А.А., Кононенко Г.П. Комплексы метаболитов микромицетов у растений семейства Розовые из лесных биоценозов // Изучение и сохранение биоразнообразия природной и антропогенной микобиоты / Мат. междунар. науч. конференции. Красноуфимск, 25–31 августа 2024 г. Екатеринбург: Редакционно-издательский отдел ГАУК СО “СО-УНБ им. В.Г. Белинского”, 2024. С. 18–22.
- Гагкаева Т.Ю., Гаврилова О.П. Образование Т-2 токсина и диацетоксисицрпенола грибами рода Fusarium на различных питательных средах // Агрохимия. 2013. Т. 8. С. 84–89.
- Губанов И.А., Киселева К.В., Новиков В.С. и др. Иллюстрированный определитель растений Средней России. Т. 2. М.: КМК, 2003. С. 356–411.
- Кононенко Г.П., Буркин А.А. Вторичные метаболиты микромицетов в растениях семейства Fabaceae рода Trifolium // Изв. РАН. Серия биол. 2018. № 2. С. 150–157. https://doi.org/10.7868/S0002332918020030
- Кононенко Г.П., Буркин А.А. Вторичные метаболиты микромицетов в растениях семейства Fabaceae родов Lathyrus, Vicia // Изв. РАН. Серия биол. 2019. № 3. С. 229—235. https://doi.org/10.1134/S0002332919030044
- Скворцов В.Э. Иллюстрированное руководство для ботанических практик и экскурсий в Средней России. М.: КМК, 2004. 506 с.
- Argyris J., van Sanford D., TeKrony D. Fusarium graminearum infection during wheat seed development and its effect on seed quality // Crop Sci. 2003. V. 43 (5). P. 1782—1788.
- Berthiller F., Crews C., Dall’Asta C. et al. Masked mycotoxins: a review // Mol. Nutr. Food Res. 2013. V. 57. P. 165—186. https://doi.org/10.1002/mnfr.201100764
- Dubey M.K., Aamir M., Kaushik M.S. PR toxin — biosynthesis, genetic regulation, toxicological potential, prevention and control measures: overview and challenges // Front. Pharmacol. 2018. V. 9. P. 288. https://doi.org/10.3389/fphar.2018.00288
- Freire L., Sant’Ana A.S. Modified mycotoxins: an updated review on their formation, detection, occurrence, and toxic effects // Food Chem. Toxicol. 2018. V. 11. P. 180—205. https://doi.org/10.1016/j.fct.2017.11.021
- Harrison J.G., Griffin E.A. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? // Environ. Microbiol. 2020. V. 22 (6). P. 2107—2123.
- Perrone G., Ferrara M., Medina A. et al. Toxigenic fungi and mycotoxins in a climate change scenario: ecology, genomics, distribution, prediction and prevention of the risk // Microorganisms. 2020. V. 8. P. 1496. https://doi.org/10.3390/microorganisms8101496
- Righetti L., Rolli E., Galaverna G. et al. Plant organ cultures as masked mycotoxin biofactories: deciphering the fate of zearalenone in micropropagated durum wheat roots and leaves // PLoS One. 2017. V. 12 (11). P. e0187247. https://doi.org/10.1371/journal.pone.0187247
- Savard M.E., Sinha R.C., Seaman W.L. et al. Sequential distribution of the mycotoxin deoxynivalenol in wheat spikes after inoculation with Fusarium graminearum // Can. J. Plant Pathol. 2000. V. 22 (3). P. 280—285.
- Schulz B., Boyle C. The endophytic continuum // Mycol. Res. 2005. V. 109 (6). P. 661—686. https://doi.org/10.1017/S095375
- Winter M., Koopmann B., Doll K. et al. Mechanisms regulating grain contamination with trichothecenes translocated from the stem base of wheat (Triticum aestivum) infected with Fusarium culmorum // Phytopathology. 2013. V. 103 (7). P. 682—689.
- Zhao Y., Xiong Z., Wu G. et al. Fungal endophytic communities of two wild Rosa varieties with different powdery mildew susceptibilities // Front. Microbiol. 2018. P. 9. https://doi.org/10.3389/fmicb.2018.02462
- Zhang Z., Nie D., Fan K. et al. A systematic review of plant-conjugated masked mycotoxins: occurrence, toxicology, and metabolism // Crit. Rev. Food Sci. Nutr. 2020. V. 60 (9). P. 1523—1537. https://doi.org/10.1080/10408398.2019.1578944
Supplementary files

