Evaluation of gut microbial diversity of the domestic goat Capra hircus

Cover Page

Cite item

Full Text

Abstract

Domestic goats remain important as farm animals, whose health influences the quality and yield of livestock products. Animal health depends on housing conditions and nutrition, including effective digestion, which is significantly influenced by microorganisms inhabiting the pathways of the gastrointestinal tract. Ruminants, such as goats, host a unique community of bacteria, that varies depending on age and region of residence. One major challenge is identifying the normal members of the goat gut microbiome, and distinguishing these from members that may vary in goats without indicating disease. This study synthesizes available published data to address this issue.

About the authors

V. V. Volodin

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

N. S. Gladysh

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: natalyagladish@gmail.com
Moscow, Russia

A. K. Piskunov

Vavilov Institute of General Genetic, Russian Academy of Sciences

Moscow, Russia

Yu. A. Stolpovsky

Vavilov Institute of General Genetic, Russian Academy of Sciences

Moscow, Russia

Zh. V. Samsonova

Lomonosov Moscow State University

Moscow, Russia

N. Yu. Saushkin

Lomonosov Moscow State University

Moscow, Russia

A. A. Kudryavtsev

Razumovsky Moscow State University of Technologies and Management (First Cossack University)

Moscow, Russia

A. V. Kudryavtseva

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Moscow, Russia

References

  1. Arjun S., Neha P., Mohith Sai S.R., Ravi L. Microbial symbionts in ruminants // Microbial symbionts: functions and molecular interactions on host. Ch. 27 / Ed. D. Dharumadurai. N.Y.: Acad. Press, 2023. P. 493–509.
  2. Arshad M.A., Hassan F., Rehman M.S. et al. Gut microbiome colonization and development in neonatal ruminants: strategies, prospects, and opportunities // Anim. Nutr. 2021. V. 7 (3). P. 883–895.
  3. Betancur-Murillo C.L., Aguilar-Marín S.B., Jovel J. Prevotella: a key player in ruminal metabolism // Microorganisms. 2023. V. 11 (1). 1.
  4. Chiantera V., Laganà A.S., Basciani S. et al. A critical perspective on the supplementation of Akkermansia muciniphila: benefits and harms // Life. 2023. V. 13 (6). 1247.
  5. Cholewińska P., Czyż K., Nowakowski P., Wyrostek A. The microbiome of the digestive system of ruminants – a review // Anim. Health Res. Rev. 2020. V. 21 (1). P. 3–14.
  6. Cholewińska P., Górniak W., Wojnarowski K. Impact of selected environmental factors on microbiome of the digestive tract of ruminants // BMC Vet. Res. 2021. V. 17 (1). 25.
  7. Doughari H.J., Ndakidemi P.A., Human I.S., Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview // Microbes Environ. 2011. V. 26 (2). P. 101–112.
  8. Flint H.J., Bayer E.A., Rincon M.T. et al. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis // Nat. Rev. Microbiol. 2008. V. 6 (2). P. 121–131.
  9. Graf J. The family Rikenellaceae // The prokaryotes: other major lineages of bacteria and the archaea / Eds E. Rosenberg et al. Berlin, Heidelberg: Springer, 2014. P. 857–859.
  10. Guo J., Li P., Zhang K. et al. Distinct stage changes in early-life colonization and acquisition of the gut microbiota and its correlations with volatile fatty acids in goat kids // Front. Microbiol. 2020. V. 11. P. 584742.
  11. Ley R.E. Prevotella in the gut: choose carefully // Nat. Rev. Gastroenterol. Hepatol. 2016. V. 13 (2). P. 69–70.
  12. Lohani M., Bhandari D. The importance of goats in the world // Profe. Agric. Work. J. 2021. V. 6 (2). 9.
  13. Lu C.D. The role of goats in the world: society, science, and sustainability // Small Rumin. Res. 2023. V. 227. 107056.
  14. McMurdie P.J., Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data // PLoS One. 2013. V. 8 (4). e61217.
  15. Nordhoff M., Taras D., Macha M. et al. Treponema berlinense sp. nov. and Treponema porcinum sp. nov., novel spirochaetes isolated from porcine faeces // Int. J. Syst. Evol. Microbiol. 2005. V. 55 (4). P. 1675–1680.
  16. Parker B.J., Wearsch P.A., Veloo A.C.M., Rodriguez-Palacios A. The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health // Front. Immunol. 2020. V. 11. P. 906.
  17. Quast C., Pruesse E., Yilmaz P. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools // Nucl. Acids Res. 2013. V. 41. P. D590–D596.
  18. Seshadri R., Leahy S.C., Attwood G.T. et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection // Nat. Biotechnol. 2018. V. 36 (4). P. 359–367.
  19. Wessels A.G. Influence of the gut microbiome on feed intake of farm animals // Microorganisms. 2022. V. 10 (7). 1305.
  20. Wood D.E., Lu J., Langmead B. Improved metagenomic analysis with Kraken 2 // Gen. Biol. 2019. V. 20 (1). 257.
  21. Wu G.D., Chen J., Hoffmann C. et al. Linking long-term dietary patterns with gut microbial enterotypes // Science. 2011. V. 334 (6052). P. 105–108.
  22. Zafar H., Saier M.H.Jr. Gut Bacteroides species in health and disease // Gut Microbes. 2021. V. 13 (1). P. 1–20.
  23. Zhang H., Rehman M.U., Chang Y.-F., Zhaoxin T. Editorial: the potential role of gut microbiome in animal gut-linked diseases // Front. Microbiol. 2023. V. 14. 1179481.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).