Dependence of Clinostatic and Orthostatic Cardiointervalography Parameters on the Duration (Volume) of Training and Competition Loads of Aerobic and Anaerobic Nature of an Elite Racer-Skier

Cover Page

Cite item

Full Text

Abstract

Elite cross-country skier K.D., a member of the men’s national team of the Republic of Tatarstan, Master of sports of Russia, had his heart rate variability (HRV) recorded sequentially (for 5 minutes) almost daily during two ski seasons (2018–2019 and 2019–2020) during the preparatory, competitive and transition periods under conditions of clinostasis and then under conditions of active orthostasis. The values of 8 spectral and 6 temporal indicators of clino-HRV and ortho-HRV were compared (taking into account the five “working pulse” zones) with the total duration of the load (TDL1-5), as well as with the duration of aerobic (DL1-3) or anaerobic (DL4-5) loads. It was shown that during endurance training the influence of the sympathetic division (SD) of the autonomic nervous system (ANS) on the heart increases, and especially the influence of the parasympathetic division (PD) of the autonomic nervous system (ANS), including due to the appearance of non-neuronal acetylcholine (NN-ACh) synthesis in cardiomyocytes as a component of the anti-apoptotic, antioxidant and anti-inflammatory system. It was established that the nature of the statistically significant dependence of the medians (11 out of 14) of the HRV indicators on the total duration of the load (TDL1-5), as well as on the duration of aerobic (DL1-3) or anaerobic (DL4-5) loads in elite cross-country skier K.D., depends on the conditions under which the HRV is recorded – in clinostasis or in active orthostasis. The change in the nature of the dependence of the HRV parameters under active orthostasis is explained by the presence of non-neuronal acetylcholine (NN-ACh), the synthesis of which by cardiomyocytes occurs during endurance training. Based on the nature of the change in the dependence of the medians of the HRV parameters on the duration of training or competitive loads observed during active orthostasis (in comparison with clinostasis), 9 criteria for the presence of NN-ACh synthesis in the heart of an athlete training for endurance are proposed.

About the authors

D. A. Kataev

Vyatka State University; Kirov Regional State Autonomous Institution of Additional Education “Sports School of Olympic Reserve “Perekop”

Email: trukhinasvetlana@yandex.ru
Russian Federation, Kirov; Kirov

V. I. Tsirkin

Kazan State Medical University of the Ministry of Health of the Russian Federation

Email: trukhinasvetlana@yandex.ru
Russian Federation, Kazan

A. N. Trukhin

Vyatka State University

Email: trukhinasvetlana@yandex.ru
Russian Federation, Kirov

S. I. Trukhina

Vyatka State University

Author for correspondence.
Email: trukhinasvetlana@yandex.ru
Russian Federation, Kirov

References

  1. Белова Е.Л., Румянцева Н.В. Взаимосвязь показателей ритма сердца и некоторых характеристик тренировочных и соревновательных нагрузок квалифицированных лыжников-гонщиков // Вестн. спорт. науки. 2009. № 4. С. 29–33.
  2. Викулов А.Д., Бочаров М.В., Каунина Д.В. и др. Регуляция сердечной деятельности у спортсменов высокой квалификации // Вестн. спорт. науки. 2017. № 2. С. 31–36.
  3. Грушин А.А. Поиски оптимальных параметров тренировочных нагрузок в циклических видах спорта на примере подготовки высококвалифицированных лыжниц-гонщиц // Мат. VI Всерос. науч.-практ. конф. тренеров по лыжным гонкам «Актуальные вопросы подготовки лыжников-гонщиков высокой квалификации». 2022. С. 6–16.
  4. Есева Т.А., Варламова Н.Г., Логинова Т.П. и др. Компьютерная модель представления результатов обследования по тренировочным зонам у лыжников-гонщиков // Изв. Коми научного центра УрО РАН. 2018. Т. 4 (36). С. 25–30.
  5. Катаев Д.А., Циркин В.И., Завалин Н.С. и др. Динамика TP-, HF-, LF- и VLF-волн кардиоинтервалограммы (в условиях клиностаза) элитного лыжника-гонщика в подготовительном, соревновательном и переходном периодах в зависимости от объема и интенсивности тренировочных нагрузок // Физиол. человека. 2023. Т. 49 (5). С. 87–100.
  6. Катаев Д.А., Циркин В.И., Трухин А.Н. и др. Показатели кардиоинтервалограммы в условиях клиностаза и ортостаза у элитных лыжников-гонщиков в течение годичного макроцикла // Физиол. человека. 2025 – в печати.
  7. Кудря О.Н. Влияние физических нагрузок разной направленности на вариабельность ритма сердца у спортсменов // Бюл. сиб. медицины. 2009. Т. 8 (1). С. 36–42.
  8. Литвин Ф.Б., Аносов И.П., Асямолов П.О. и др. Сердечный ритм и система микроциркуляции у лыжников в предсоревновательном периоде спортивной подготовки // Вестн. Удмурт. ГУ. Сер. биол. Науки о земле. 2012. № 1. С. 67–74.
  9. Марков А.Л. Вариабельность сердечного ритма у лыжников-гонщиков Республики Коми // Журн. мед.-биол. исслед. 2019. T. 7 (2). С. 151–160.
  10. Миссина С.С., Адодин Н.В., Крючков А.С. и др. Модели периодизации нагрузок силовой направленности в мезоциклах подготовки лыжников-гонщиков высокого класса // Педагогико-психологические и медико-биологические проблемы физической культуры и спорта. 2022. Т. 17 (3). С. 23–30.
  11. Михайлов В.М. Вариабельность ритма сердца (новый взгляд на старую парадигму). Иваново: Нейрософт, 2017. 516 c.
  12. Стентон Г. Медико-биологическая статистика. Пер. с англ. М.: Практика, 1998. 459 с.
  13. Федерация лыжных гонок России [Электронный ресурс]. Режим доступа: https://flgr-results.ru.
  14. Шлык Н.И., Сапожникова Е.Н., Кириллова Т.Г. и др. Об особенностях ортостатической реакции у спортсменов с разными типами вегетативной регуляции // Вестн. Удмурт. ГУ. Сер. биол. Науки о земле. 2012. № 1. С. 114–125.
  15. Abramochkin D.V., Borodinova A.A., Rosenshtraukh L.V. et al. Both neuronal and non-neuronal acetylcholine take part in non-quantal acetylcholine release in the rat atrium // Life Sci. 2012. V. 91 (21–22) P. 1023–1026.
  16. Alfonso C., Capdevila L. Heart rate variability, mood and performance: a pilot study on the interrelation of these variables in amateur road cyclists // Peer J. 2022. V. 10. Art. e13094.
  17. Barrero A., Schnell F., Carrault G. et al. Daily fatigue-recovery balance monitoring with heart rate variability in well-trained female cyclists on the Tour de France circuit // PLoS One. 2019. V. 14 (3). Art. e0213472.
  18. Beckmann J., Lips K.S. The non-neuronal cholinergic system in health and disease // Pharmacology. 2013. V. 92 (5–6). P. 286-302.
  19. Beleza J., Albuquerque J., Santos-Alves E. et al. Self-paced free-running wheel mimics high-intensity interval training impact on rats’ functional, physiological, biochemical, and morphological features // Front. Physiol. 2019. V. 10. P. 593.
  20. Braczko F., Fischl S.R., Reinders J. et al. Activation of the nonneuronal cholinergic cardiac system by hypoxic preconditioning protects isolated adult cardiomyocytes from hypoxia/reoxygenation injury // Am. J. Physiol. Heart. Circ. Physiol. 2024. V. 327 (1). P. 70–79. https://doi.org/10.1152/ajpheart.00211.2024
  21. Buchheit M. Monitoring training status with HR measures: Do all roads lead to Rome? // Front. Physiol. 2014. V. 5. Art. 73.
  22. de Oliveira Bristot V.J., de Bem Alves A.C., Cardoso L.R. et al. The role of PGC-1alpha/UCP2 signaling in the beneficial effects of physical exercise on the brain // Front. Neurosci. 2019. V. 13. P. 292.
  23. Greggio C., Jha P., Kulkarni S.S. et al. Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle // Cell. Metab. 2017. V. 25 (2). P. 301–311.
  24. Glancy B., Balaban R.S. Energy metabolism design of the striated muscle cell // Physiol. Rev. 2021. V. 101 (4). P. 1561–1607.
  25. Hottenrott L., Gronwald T., Hottenrott K. et al. Utilizing heart rate variability for coaching athletes during and after viral infection: A case report in an elite endurance athlete // Front. Sport. Act. Liv. 2021. V. 3. Art. 612782.
  26. Huertas J.R., Al Fazazi S., Hidalgo-Gutierrez A. et al. Antioxidant effect of exercise: Exploring the role of the mitochondrial complex I superassembly // Redox Biol. 2017. V. 13. P. 477–481.
  27. Joseph J.S., Anand K., Malindisa S.T. et al. Exercise, CaMKII, and type 2 diabetes // EXCLI J. 2021. V. 20. P. 386–399.
  28. Kakinuma Y. Characteristic effects of the cardiac non-neuronal acetylcholine system augmentation on brain functions // Int. J. Mol. Sci. 2021. V. 22 (2). P. 545.
  29. Kataev D.A., Tsirkin V.I., Trukhin A.N. et al. Sports vagotonia as a result of increased synthesis of non-neuronal acetylcholine by cardiomyocytes // Anatom. Physiol. Biochem. Int. J. 2024. V. 7 (3). Art. 555711.
  30. Kasai S., Shimizu S., Tatara Y. et al. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and pathology // Biomolecules. 2020. V. 10 (2). P. 320.
  31. Korsak A., Kellett D.O., Aziz Q. et al. Immediate and sustained increases in the activity of vagal preganglionic neurons during exercise and after exercise training // Cardiovasc. Res. 2023. V. 119 (13). P. 2329–2341. https://doi.org/10.1093/cvr/cvad115
  32. Kras K.A., Hoffman N., Roust L.R. et al. Adenosine triphosphate production of muscle mitochondria after acute exercise in lean and obese humans // Med. Sci. Sport. Exerc. 2019. V. 51 (3). P. 445–453.
  33. Li J., Li Y., Atakan M.M. et al. The molecular adaptive responses of skeletal muscle to high-intensity exercise/training and hypoxia // Antioxidants (Basel). 2020. V. 9 (8). P. 656.
  34. Lundstrom C.J., Foreman N.A., Biltz G. Practices and applications of heart rate variability monitoring in endurance athletes // Int. J. Sport. Med. 2023. V. 1. P. 9–19.
  35. Manzi V., Castagna C., Padua E. et al. Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners // Am. J. Physiol. Heart. Circ. Physiol. 2009. V. 296 (6). P. 1733.
  36. Oikawa S., Kai Y., Mano A. et al. Non-neuronal cardiac acetylcholine system playing indispensable roles in cardiac homeostasis confers resiliency to the heart // J. Physiol. Sci. 2021. V. 71 (1). P. 2. https://doi.org/10.1186/s12576-020-00787-6
  37. Pengam M., Moisan C., Simon B. et al. Training protocols differently affect AMPK-PGC-1α signaling pathway and redox state in trout muscle // Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2020. V. 243. Art. 110673.
  38. Plа R., Aubry A., Resseguier N. et al. Training organization, physiological profile and heart rate variability changes in an open-water world champion // Int. J. Sport. Med. 2019. V. 40 (8). P. 519–527.
  39. Islam H., Hood D.A., Gurd B.J. Looking beyond PGC-1alpha: emerging regulators of exercise-induced skeletal muscle mitochondrial biogenesis and their activation by dietary compounds // Appl. Physiol. Nutr. Metab. 2020. V. 45 (1). P. 11–23.
  40. Ravé G., Fortrat J-O. Heart rate variability in the standing position reflects training adaptation in professional soccer players // Eur. J. Appl. Physiol. 2016. V. 116 (8). P. 1575–1582.
  41. Roberts F.L., Markby G.R. New insights into molecular mechanisms mediating adaptation to exercise; A review focusing on mitochondrial biogenesis, mitochondrial function, mitophagy and autophagy // Cells. 2021. V. 10 (10). P. 2639.
  42. Saw E.L., Kakinuma Y., Fronius M. et al. The non-neuronal cholinergic system in the heart: a comprehensive review // J. Mol. Cel. Cardiol. 2018. V. 125. P. 129–139.
  43. Schäfer D., Gjerdalen G.F., Solberg E.E. et al. Sex differences in heart rate variability: a longitudinal study in international elite cross-country skiers // Eur. J. Appl. Physiol. 2015. V. 115 (10). P. 2107–2114.
  44. Schmitt L., Bouthiaux S., Millet G.P. Eleven years’ monitoring of the world’s most successful male biathlete of the last decade // Int. J. Sports. Physiol. Perform. 2021. V. 16 (6). Р. 900–905.
  45. Schmitt L., Regnard J., Desmarets M. et al. Fatigue shifts and scatters heart rate variability in elite endurance athletes // PLoS One. 2013. V. 8 (8). Art. e71588.
  46. Schmitt L., Regnard J., Millet G.P. Monitoring fatigue status with HRV measures in elite athletes: an avenue beyond RMSSD? // Front. Physiol. 2015. V. 19 (6). P. 343.
  47. Solli G.S., Tønnessen E., Sandbakk Ø. The training characteristics of the world’s most successful female cross-country skier // Front. Physiol. 2017. V. 8. P. 1069.
  48. Weihrauch M., Handschin C. Pharmacological targeting of exercise adaptations in skeletal muscle: Benefits and pitfalls // Biochem. Pharmacol. 2018. V. 147. P. 211–220.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».