The Gut Microbiome and Age-Related Diseases
- Authors: Shilovsky G.A.1, Sorokina E.V.1, Akhaev D.N.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 145, No 1 (2025)
- Pages: 11-19
- Section: Articles
- Submitted: 01.06.2025
- Accepted: 01.06.2025
- Published: 01.06.2025
- URL: https://journals.rcsi.science/0042-1324/article/view/294687
- DOI: https://doi.org/10.31857/S0042132425010021
- EDN: https://elibrary.ru/DMNTDT
- ID: 294687
Cite item
Full Text
Abstract
The gut microbiome (community of microorganisms) in the human body has an enormous impact on human physiology in both healthy and pathological states. It can influence human health either directly by secreting biologically active substances such as vitamins, bactericins, essential amino acids, lipids, etc., or indirectly by modulating metabolic processes and the immune system. The composition of the microbiota is determined by genetic predisposition and the microbiome obtained in childhood from the mother and the environment, which may change during life under the influence of external and internal factors. The most noticeable deviations of the human microbiome undergoes in infancy and then in old age, when immunity is also in the weakest and most unstable state, which can lead to the development of various pathologies. When correcting various pathological conditions and when used in the complex treatment of diseases, the use of probiotics and prebiotics is recommended. The development of test systems of biologically active substances affecting the human microbiome makes it possible to determine the biological activity of individual strains and to design new generation preparations for prolonging healthy longevity. Such developments are another step towards personalised medicine.
About the authors
G. A. Shilovsky
Lomonosov Moscow State University
Author for correspondence.
Email: gregory_sh@list.ru
Department of Biology
Russian Federation, MoscowE. V. Sorokina
Lomonosov Moscow State University
Email: gregory_sh@list.ru
Department of Biology
Russian Federation, MoscowD. N. Akhaev
Lomonosov Moscow State University
Email: gregory_sh@list.ru
Department of Biology
Russian Federation, MoscowReferences
- Мечников И.И. Этюды оптимизма. М.: Наука, 1964.
- Сорокина Е.В., Стоянов И.А., Абдуллаева А.М. и др. Многофункциональные свойства пробиотических штаммов Lactococcus lactis ssp. lactis // Успехи соврем. биол. 2022. Т. 142 (1). С. 1–12. https://doi.org/10.31857/S0042132422010070
- Сорокина Е.В., Дбар С.Д., Стоянова Л.Г. Использование смектита для эффективности пробиотических свойств Lactococcus lactis ssp. // Пробл. ветеринар. санитарии, гигиены и экол. 2024. № 1. С. 72–79.
- Суворов А.Н. Микробиота пожилых: истоки долголетия // Природа. 2017. № 1. С. 22–29. https://doi.org/007.001.0032-874X.2017.000.001.3
- Сучков С.В., Абэ Х., Мёрфи Ш. и др. Здоровье, экологический комфорт и благополучие человека. Часть 2. Экологический комфорт – новый и стратегический фактор в охране здоровья современного человека // Успехи соврем. биол. 2024. Т. 144 (3). С. 314–334.
- Шиловский Г.А., Сорокина Е.В. Охратоксин A и индукция антиоксидантной/антитоксической системы клетки транскрипционным фактором NRF2 // Проблемы мед. микол. 2020. Т. 22 (4). С. 3–7. https://doi.org/10.24412/1999-6780-2020-4-3-7
- Шиловский Г.А., Сорокина Е.В., Любецкая Е.В. Ферубко Е.В. Новые методы индукции антиоксидантной защиты на основе нутриентов и пробиотиков у пожилых // Клин. геронтол. 2022. Т. 28 (11–12). С. 76–78. https://doi.org/10.26347/1607-2499202211-12076-078
- Abisado R.G., Benomar S., Klaus J.R. et al. Bacterial quorum sensing and microbial community interactions // mBio. 2018. V. 9 (3). P. e02331-17. https://doi.org/10.1128/mBio.02331-17
- Azad M.B., Konya T., Maughan H. et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months // Canadian Med. Assoc. J. 2013. V. 185 (5). P. 385–394. https://doi.org/10.1503/cmaj.121189
- Cattaneo A., Cattane N., Galluzzi S. et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly // Neurobiol. 2017. V. 49. P. 60–68.
- Cheng L., Qi C., Yang H. et al. gutMGene: a comprehensive database for target genes of gut microbes and microbial metabolites // Nucl. Acids Res. 2022. V. 50 (D1). P. D795–D800. https://doi.org/10.1093/nar/gkab786
- Choi H.H., Cho Y.S. Fecal microbiota transplantation: current applications, effectiveness and future perspectives // Clin. Endosc. 2016. P. V. 49. P. 257–265. https://doi.org/ 10.5946/ce.2015.117
- Chung W.S., Walker A.W., Louis P. et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level // BMC Biol. 2016. № 14. P. 3 https://doi.org/10.1186/s12915-015-0224-3
- Claesson M.J., Cusack S., O’Sullivan O., et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly // PNAS USA. 2011. V. 15 (108). P. 4586–4591. https://doi.org/10.1073/pnas.1000097107.18
- Claesson M.J., Jeffery I.B., Conde S. et al. Gut microbiota composition correlates with diet and health in the elderly // Nature. 2012. V. 488 (7410). P. 178–184. https://doi.org/10.1038/nature11319
- David L.A., Maurice C.F., Carmody R.N. et al. Diet rapidly and reproducibly alters the human gut microbiome // Nature. 2014. V. 505. P. 559–563. https://doi.org/10.1038/nature12820
- Ding F., Krasilnikova A.A., Leontieva M.R et al. Analysis of kefir grains from different regions of the planet using high-throughput sequencing // Moscow Univ. Biol. Sci. Bull. 2022. V. 77 (4). P. 286–291.
- Dominianni C., Sinha R., Goedert J.J., Pei Z. et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome // PLoS One. 2015. V. 10 (4). P. e0124599. https://doi.org/10.1371/journal.pone.0124599
- Eloe-Fadrosh E.A., Brady A., Crabtree J. et al. Functional dynamics of the gut microbiome in elderly people during probiotic consumption // mBio. 2015. V. 6. P. 0023–15. https://doi.org/10.1128/mBio.00231-15
- Ermolenko E., Sitkin S., Vakhitov T. et al. Evaluation of the effectiveness of personalised therapy for the patients with irritable bowel syndrome // Benef. Microbes. 2023. V. 14 (2). P. 119–129. https://doi.org/10.3920/BM2022.0053
- Flint H.J., Duncan S.H., Scott K.P., Louis P. Links between diet, gut microbiota composition and gut metabolism // Proc. Nutr. Soc. 2015. V. 74 (1). P. 13–22. https://doi.org/10.1017/S002966511400146
- Fock E, Parnova R. Mechanisms of blood-brain barrier protection by microbiota-derived short-chain fatty acids // Cells. 2023. V. 12 (4). P. 657. https://doi.org/10.3390/cells12040657
- Fung T.C., Olson C.A., Hsiao E.Y. Interactions between the microbiota, immune and nervous systems in health and disease // Nat. Neurosci. 2017. V. 20 (2). P. 145–155. https://doi.org/ 10.1038/nn.4476
- Graf D., Di Cagno R., Fåk F. et al. Contribution of diet to the composition of the human gut microbiota // Microb. Ecol. Health Dis. 2015. V. 26. P. 26164. https://doi.org/10.3402/mehd.v26.26164
- Greenhalgh K., Meyer K.M., Aagaard K.M., Wilmes P. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime // Environ. Microbiol. 2016. V. 18 (7). P. 2103–2116. https://doi.org/10.1111/1462-2920.13318
- Greenhill A.R., Tsuji H., Ogata K. et al. Characterization of the gut microbiota of Papua New Guineans using reverse transcription quantitative PCR // PLoS One. 2015. V. 10 (2). P. 0117427. https://doi.org/10.1371/journal.pone.0117427
- Grice E.A., Segre J.A. The human microbiome: our second genome // Annu. Rev. Genom. Hum. Genet. 2012. V. 13. P. 151–170. https://doi.org/ 10.1146/annurev-genom-090711-163814
- Gromova L.V., Ermolenko E.I., Sepp A.L. et al. Gut digestive function and microbiome after correction of experimental dysbiosis in rats by indigenous bifidobacteria // Microorganisms. 2021. V. 9 (3). P. 522. https://doi.org/10.3390/microorganisms9030522
- Harach T., Marungruang N., Duthilleul N. et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota // Sci. Rep. 2017. № 7. 41802.
- Jandhyala S.M., Talukdar R., Subramanyam C. et al. Role of the normal gut microbiota // World J. Gastroenterol. 2015. V. 21 (29). P. 8787–8803. https://doi.org/10.3748/wjg.v21.i29.8787
- Jun S.R., Cheema A., Bose C. et al. Multi-omic analysis reveals different effects of sulforaphane on the microbiome and metabolome in old compared to young mice // Microorganisms. 2020. V. 8 (10). P. 1500. https://doi.org/10.3390/microorganisms8101500
- Nafea A.M., Wang Y., Wang D. et al. Application of next-generation sequencing to identify different // Front. Microbiol. 2024. V. 14. P. 1329330. https://doi.org/10.3389/fmicb.2023.1329330
- Odamaki T., Kato K., Sugahara H. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study // BMC Microbiol. 2016. № 16. P. 90. https://doi.org/ 10.1186/s12866-016-0708-5
- Kowalski K.; Mulak A. Brain-gut-microbiota axis in Alzheimer’s disease // J. Neurogastroenterol. Motil. 2019. V. 25. P. 48–60.
- Liu Y., Wang X., Podio N.S. et al. Research progress on the regulation of oxidative stress by phenolics: the role of gut microbiota and Nrf2 signaling pathway // J. Sci. Food. Agric. 2024 V. 104 (4). P. 1861–1873. https://doi.org/10.1002/jsfa.13062
- Mackie R.I., Sghir A., Gaskins H.R. Developmental microbial ecology of the neonatal gastrointestinal tract // Am. J. Clin. Nutr. 1999. V. 69 (5). P. 1035S–1045S. https://doi.org/10.1093/ajcn/69.5.1035s
- Maryam T.A., Jean-Christophe L., Didier R. Diet influence on the gut microbiota and dysbiosisrelated to nutritional disorders // Hum. Microb. J. 2016. № 1. P. 3–11. https://doi.org/10.1016/j.humic.2016.09.001
- Maukonen J., Saarela M. Human gut microbiota: does diet matter? // Proc. Nutr. Soc. 2015. V. 74 (1). P. 23–36. https://doi.org/10.1017/S0029665114000688
- Nagpal R., Mainali R., Ahmadi S. et al. Gut microbiome and aging: Physiological and mechanistic insights // Nutr. Health. Aging. 2018. V. 15 (4). P. 267–285. https://doi.org/10.3233/NHA-170030
- Nogal A., Asnicar F., Vijay A. et al. Genetic and gut microbiome determinants of SCFA circulating and fecal levels, postprandial responses and links to chronic and acute inflammation // Gut Microbes. 2023. V. 15 (1). P. 2240050. https://doi.org/10.1080/19490976.2023.2240050
- Nuzum N.D., Szymlek-Gay E.A., Loke S. et al. Differences in the gut microbiome across typical ageing and in Parkinson’s disease // Neuropharmacology. 2023. V. 235. P. 109566. https://doi.org/ 10.1016/j.neuropharm.2023.109566
- Nyangale E.P., Farmer S., Cash H.A. et al. Bacillus coagulans GBI-30, 6086 modulates Faecalibacterium prausnitzii in older men and women // J. Nutr. 2015. V. 145. P. 1446–1452. https://doi.org/10.3945/jn.114.199802
- Oleskin A.V., Sorokina E.V., Shilovsky G.A. Interaction of catecholamines with microorganisms, neurons, and immune cells // Biol. Bull. Rev. 2021. V. 11 (4). P. 358–367. https://doi.org/ 10.1134/S2079086421040058
- Pelton R. The microbiome theory of aging (MTA) // Integr. Med. (Encinitas). 2023. V. 21 (6). P. 28–34.
- Prince A.L., Chu D.M., Seferovic M.D. et al. The perinatal microbiome and pregnancy: moving beyond the vaginal microbiome // Cold Spring Harb. Perspect. Med. 2015. V. 5 (6). Art. a023051. https://doi.org/10.1101/cshperspect.a023051
- Rajilić-Stojanović M., Heilig H.G., Molenaar D. et al. Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults // Environ. Microbiol. 2009. V. 11 (7). P. 1736–1751. https://doi.org/10.1111/j.1462-2920.2009.01900.x
- Ratanapokasatit Y., Laisuan W., Rattananukrom T. et al. How microbiomes affect skin aging: the updated evidence and current perspectives // Life (Basel). 2022. V. 12 (7). P. 936. https://doi.org/ 10.3390/life12070936
- Rolhion N., Chassaing B. When pathogenic bacteria meet the intestinal microbiota // Phil. Trans. Royal Soc. B Biol. Sci. 2016. V. 371 (1707). P. 20150504.
- Saduakhasova S., Kushugulova A., Kozhakhmetov S. et al. Antioxidant activity of the probiotic consortium in vitro // Cent. Asian J. Glob. Health. 2014. V. 24 (2). P. 115. https://doi.org/10.5195/cajgh.2013.115
- Saraswati S., Sitaraman R. Aging and the human gut microbiota – from correlation to causality // Front. Microbiol. 2015. V. 5. Art. 764. https://doi.org/10.3389/fmicb.2014.00764
- Sartor R.B. Microbial influences in inflammatory bowel diseases // Gastroenterology. 2008. V. 134 (2). P. 577–594. https://doi.org/10.1053/j.gastro.2007.11.059
- Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body // PLoS Biol. 2016. V. 14 (8). P. 1002533. https://doi.org/10.1371/journal.pbio.1002533
- Senger D.R., Li D., Jaminet S.C., Cao S. Activation of the Nrf2 cell defense pathway by ancient foods: disease prevention by important molecules and microbes lost from the modern western diet // PLoS One. 2016. V. 17 (11). P. 0148042. https://doi.org/10.1371/journal.pone.0148042
- Sharma R, Diwan B. A cellular senescence-centric integrated approach to understanding organismal aging // Curr. Aging Sci. 2023. V. 16 (1). P. 12–24. https://doi.org/10.2174/1874609815666220914104548
- Shilovsky G.A., Sorokina E.V., Putyatina T.S. Assessment of the human metabolome as a method for molecular diagnostics of colorectal cancer: Prevention and therapy // Biol. Bull. Rev. 2022. V. 12 (4). P. 422–427. https://doi.org/ 10.1134/S2079086422040089
- Suvorov A. Gut microbiota, probiotics and human health // Biosci. Microb. Food Health. 2013. V. 32. P. 81–91. https://doi.org/ 10.12938/bmfh.32.81
- Tanaka M., Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life // Allergol. Internat. 2017. V. 66 (4). P. 515–522. https://doi.org/10.1016/j.alit.2017.07.01059
- van Olst L., Roks S.J.M., Kamermans A. et al. Contribution of gut microbiota to immunological changes in Alzheimer’s disease // Front. Immunol. 2021. V. 31 (12). P. 683068. https://doi.org/10.3389/fimmu.2021.683068
- van der Hee B., Wells J.M. Microbial regulation of host physiology by shortchain fatty acids // Trends Microbiol. 2021. V. 29 (8). P. 700–712. https://doi.org/10.1016/j.tim.2021.02.001
- van de Wouw M., Schellekens H., Dinan T.G. et al. Microbiota– gut–brain axis: modulator of host metabolism and appetite // J. Nutr. 2017. V. 147 (5). P. 727–745. https://doi.org/10.3945/jn.116.240481
- Vogt N.M., Kerby R.L., Dill-McFarland K.A. et al. Gut microbiome alterations in Alzheimer’s disease // Sci. Rep. 2017. № 7. 13537. https://doi.org/10.1038/s41598-017-13601-y
- Walsh C.J., Guinane C.M., Hill C. et al. In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database // BMC Microbiol. 2015. V. 16 (15). P. 183. https://doi.org/10.1186/s12866-015-0515-4
- Wang F., Yu T., Huang G. et al. Gut microbiota community and its assembly associated with age and diet in Chinese centenarians // J. Microbiol. Biotechnol. 2015. V. 25. P. 1195–1204. https://doi.org/10.4014/jmb.1410.10014
- Wang J., Qie J., Zhu D. et al. The landscape in the gut microbiome of long-lived families reveals new insights on longevity and aging – relevant neural and immune function // Gut Microbes. 2022. 14 (1). P. 2107288. https://doi.org/10.1080/19490976.2022.2107288
- Zhang L., Yan J., Zhang C. et al. Improving intestinal inflammaging to delay aging? A new perspective // Mech. Ageing Dev. 2023. V. 214. P. 111841. https://doi.org/10.1016/j.mad.2023.111841
Supplementary files
