Biomaterial and DNA bank organization for animal population genetics research
- Authors: Voronkova V.N.1, Piskunov A.K.1, Soloshenkova E.A.1, Samsonova Y.V.1,2, Stolpovsky Y.A.1
-
Affiliations:
- Vavilov Institute of General Genetics, Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: Vol 144, No 5 (2024)
- Pages: 585-600
- Section: Articles
- Submitted: 20.02.2025
- Accepted: 20.02.2025
- Published: 20.09.2024
- URL: https://journals.rcsi.science/0042-1324/article/view/280843
- DOI: https://doi.org/10.31857/S0042132424050067
- EDN: https://elibrary.ru/OGGJGU
- ID: 280843
Cite item
Full Text
Abstract
Biobanks play an important role in population genetic studies of animals as a valuable resource for ex situ conservation of genetic diversity and research in evolution, zoology, ecology and genetics. One of the main objectives of biobanks is to preserve samples of genetic material from different animal species, thus preserving information on genetic diversity and conserving in situ populations. This is particularly important for rare and endangered species, animal breeds and plant varieties, where genetic diversity may be declining due to population loss. Biobanks enable the exchange of specimens and data, which plays an important role in the study of the evolution and origins of different species, helping scientists to investigate the processes of divergence and adaptation. They also serve as a source for work in the study of genetic diseases, behavioral traits, and species interactions in ecosystems. Biobanks provide the basis for various types of genetic research, such as genome sequencing, phylogeny, DNA variability analysis, and functional genomics, which in turn provide the opportunity to develop new methods for genetic disease detection, genomic selection, and conservation and restoration of animal populations. Biobanking thus plays an important role in animal population genetics research, providing scientists with access to a wide range of genetic information that is essential for understanding and conserving our planet’s biodiversity. The issue of environmentally sound and efficient storage of biomaterial is more relevant than ever. In this review, we consider different approaches to the organization of biomaterials and DNA bank in the field of population genetic studies of animals, peculiarities of their collection, transport, processing and storage.
Full Text

About the authors
V. N. Voronkova
Vavilov Institute of General Genetics, Russian Academy of Sciences
Author for correspondence.
Email: valery.voronkova@gmail.com
Russian Federation, Moscow
A. K. Piskunov
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: valery.voronkova@gmail.com
Russian Federation, Moscow
E. A. Soloshenkova
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: valery.voronkova@gmail.com
Russian Federation, Moscow
Y. V. Samsonova
Vavilov Institute of General Genetics, Russian Academy of Sciences; Lomonosov Moscow State University
Email: valery.voronkova@gmail.com
Russian Federation, Moscow; Moscow
Yu. A. Stolpovsky
Vavilov Institute of General Genetics, Russian Academy of Sciences
Email: valery.voronkova@gmail.com
Russian Federation, Moscow
References
- Абдельманова А.С., Форнара М.С., Бардуков Н.В. и др. Полногеномное исследование ассоциаций SNP с высотой в холке в популяциях локальных и трансграничных пород крупного рогатого скота в России // Сельскохоз. биол. 2021. Т. 56 (6). С. 1111–1122. https://doi.org/10.15389/agrobiology.2021.6.1111rus
- Андреева Т.В., Малярчук А.Б., Сошкина А.Д. и др. Методологии выделения древней ДНК из костной ткани для геномного анализа: подходы и практические рекомендации // Генетика. 2022. Т. 58 (9). С. 979–998. https://doi.org/10.31857/S001667582209003X [Andreeva T.V., Malyarchuk A.B., Soshkina A.D. et al. Methodologies for ancient DNA extraction from bones for genomic analysis: approaches and guidelines // Russ. J. Genet. 2022. Т. 58 (9). С. 1017–1035.]
- Антонова О.С., Корнева Н.А., Белов Ю.В., Курочкин В.Е. Эффективные методы выделения нуклеиновых кислот для проведения анализов в молекулярной биологии (обзор) // Науч. приборостроение. 2010. Т. 20 (1). С. 3–9.
- Бекетов С.В., Семина М.Т., Мокеев А.С. и др. Перспективы применения технологии “генетического биркования” в животноводстве // Главн. зоотехник. 2024. № 5. С. 3–15. https://doi.org/10.33920/sel-03-2405-01
- Григоренко А.П., Боринская С.А., Янковский Н.К., Рогаев Е.И. Достижения и особенности в работе с древней ДНК и ДНК из сложных криминалистических образцов // Acta Naturae (русскоязычная версия). 2009. № 3. С. 64–76.
- Долудин Ю.В., Лимонова А.С., Козлова В.А. и др. Сбор и хранение ДНК-содержащего биоматериала и выделенной ДНК // Кардиоваскул. терапия и профилактика. 2020. Т. 19 (6). С. 2730. https://doi.org/10.15829/1728-8800-2020-2730
- Загоровская В. Этикетка. Современные решения // Мясная сфера. 2013. № 6 (97). С. 58–59.
- Калинин Р.С., Голева О.В., Илларионов Р.А. и др. Формирование биобанка в структуре научных и лечебно-диагностических учреждений и перспективы межрегиональной интеграции // КВТиП. 2022. № 11. https://doi.org/10.15829/1728-8800-2022-3401
- Каменский П.А., Сазонов А.Э., Федянин А.А., Садовничий В.А. Биологические коллекции: стремление к идеалу // Acta Naturae (русскоязычная версия). 2016. № 2 (29).
- Лубенникова М.В., Афанасьев В.А., Афанасьев К.А. Выделение ДНК — важный этап молекулярно-генетического исследования // Электрон. науч.-метод. журн. Омского ГАУ. 2020. № 2. С. 4.
- Максудов Г.Ю., Иванов А.В., Малев А.В., Гильмутдинов Р.Я. Вспомогательные репродуктивные технологии как инновационный тренд сохранения биоразнообразия // Мат. междунар. науч.-практ. конф. “Биотехнология и качество жизни”. М.: Экспо-биохим-технологии, 2014. С. 407–408.
- Малеина М.Н. Правовой статус биобанка (банка биологических материалов человека) // Право. Журн. ВШЭ. 2020. № 1.
- Мешков А.Н., Ярцева О.Ю., Борисова А.Л. и др. Концепция национальной информационной платформы биобанков Российской Федерации // Кардиоваскул. терапия и профилактика. 2022. Т. 21 (11). С. 3417. https://doi.org/10.15829/1728-8800-2022-3417
- Скирко О.П., Мешков А.Н., Ефимова И.А. и др. Срок хранения образцов цельной крови в биобанке и выход выделенной из нее дезоксирибонуклеиновой кислоты при проведении генетических исследований // Кардиоваскул. терапия и профилактика. 2020. Т. 19 (6). С. 2726. https://doi.org/10.15829/1728-8800-2020-2726
- Харзинова В.Р., Акопян Н.А., Доцев А.В. и др. Генетическое разнообразие и филогенетические взаимосвязи пород свиней, разводимых в России, на основе анализа полиморфизма D-петли мтДНК // Генетика. 2022. Т. 58 (8). С. 920–932. https://doi.org/10.31857/S0016675822080045
- Adams J., Getz W.M. The economic value of genetic biodiversity in biobanks // Ecol. Econom. 2022. Art. 107358. https://doi.org/10.1016/j.ecolecon.2021.107358
- Al-Griw H.H., Zraba Z.A., Al-Muntaser S.K. et al. Effects of storage temperature on the quantity and integrity of genomic DNA extracted from mice tissues: a comparison of recovery methods // Open Vet. J. 2017. V. 7 (3). P. 239–243. https://doi.org/10.4314/ovj.v7i3.7
- Ali N., Rampazzo R.C.P., Costa A.D.T., Krieger M.A. Current nucleic acid extraction methods and their implications to point-of-care diagnostics // Biomed. Res. Int. 2017. Art. 9306564. https://doi.org/10.1155/2017/9306564
- Arandjelovic M., Guschanski K., Schubert G. et al. Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples // Mol. Ecol. Resour. 2009. V. 9 (1). P. 28–36. https://doi.org/10.1111/j.1755-0998.2008.02387.x
- Aston E.J., Mayor P., Bowman D.D. et al. Use of filter papers to determine seroprevalence of Toxoplasma gondii among hunted ungulates in remote Peruvian Amazon // Int. J. Parasitol. Parasit. Wildl. 2014. V. 3. P. 15–19. https://doi.org/10.1016/j.ijppaw.2013.12.001
- Blackburn H.D. Biobanking genetic material for agricultural animal species // Annu. Rev. Anim. Biosci. 2018. V. 15 (6). P. 69–82. https://doi.org/10.1146/annurev-animal-030117-014603
- Blackburn H.D., Lozada-Soto E., Paiva S.R. Biobanking animal genetic resources: critical infrastructure and growth opportunities // Trends Genet. 2024. V. 40. P. 115–117.
- Caenazzo L., Tozzo P. The future of biobanking: what is next? // BioTech. 2020. V. 9. P. 23. https://doi.org/10.3390/biotech9040023
- Carpentieri D., Colvard A., Petersen J. et al. Mind the quality gap when banking on dry blood spots // Biopreserv. Biobank. 2021. V. 19 (2). P. 136–142. https://doi.org/ 10.1089/bio.2020.0131
- Chacon-Cortes D., Griffiths L.R. Methods for extracting genomic DNA from whole blood samples: current perspectives // J. Biorep. Sci. Appl. Med. 2014. P. 1–9. https://doi.org/10.2147/BSAM.S46573
- Chaisomchit S., Wichajarn R., Janejai N., Chareonsiriwatana W. Stability of genomic DNA in dried blood spots stored on filter paper // Southeast Asian J. Trop. Med. Publ. Health. 2005. V. 36 (1). P. 270–273.
- Chen Y., Li L. Ethical considerations in biobanking and phenotyping animals for research purposes // J. Anim. Sci. Biotechnol. 2021. V. 12. P. 1–11. https://doi.org/10.1186/s40104-021-00630-2
- Comizzoli P., Wildt D.E. Cryobanking biomaterials from wild animal species to conserve genes and biodiversity: relevance to human biobanking and biomedical research // Biobanking of Human Biospecimens. Cham: Springer, 2017. P. 217–235. https://doi.org/10.1007/978-3-319-55120-3_13
- Curry P.S., Elkin B.T., Campbell M. et al. Filter-paper blood samples for ELISA detection of brucella antibodies in caribou // J. Wildl. Dis. 2011. V. 47. P. 12–20. https://doi.org/10.7589/0090-3558-47.1.12
- Dagher G., Dagher A. Automated biobanking: challenges and opportunities // Biopreserv. Biobank. 2018. V. 16 (3). P. 187–195. https://doi.org/10.1089/bio.2017.0067
- De Souza Y.G., Greenspan J.S. Biobanking past, present and future: responsibilities and benefits // AIDS. 2013. V. 27 (3). P. 303–312. https://doi.org/10.1097/QAD.0b013e32835c1244
- Desloire S., Moro C., Chauve C. and Zenner L. Comparison of four methods of extracting DNA from D. gallinae (Acari: Dermanyssidae) // Vet. Res. 2006. V. 37. P. 725–732. https://doi.org/10.1051/vetres:2006031
- Dimsoski P. Genotyping horse epithelial cells from fecal matter by isolation of polymerase chain reaction products // Croat. Med. J. 2017. V. 58 (3). P. 239–249. https://doi.org/ 10.3325/cmj.2017.58.239
- FAO. Cryoconservation of animal genetic resources. FAO animal production and health guidelines No. 12. Rome: Food and Agriculture Organization of the UN, 2012.
- Fouts A.N., Romero A., Nelson J., Hogan M. et al. Ambient biobanking solutions for whole blood sampling, transportation, and extraction // Biochemical analysis tools — methods for bio-molecules studies // IntechOpen. 2020. https://doi.org/10.5772/intechopen.91995
- Fowler K.E., Reitter C.P., Walling G.A., Griffin D.K. Novel approach for deriving genome wide SNP analysis data from archived blood spots // BMC Res. Notes. 2012. V. 5. P. 503. https://doi.org/10.1186/1756-0500-5-503
- Gauffin F., Nordgren A., Barbany G. et al. Quantitation of RNA decay in dried blood spots during 20 years of storage // Clin. Chem. Lab. Med. 2009. V. 47 (12). P. 1467–1469. https://doi.org/ 10.1515/CCLM.2009.351
- Groeneveld L.F., Gregusson S., Guldbrandtsen B. et al. Domesticated animal biobanking: land of opportunity // PLoS Biol. 2016. V. 14 (7). P. e1002523. https://doi.org/10.1371/journal.pbio.1002523
- Gurau M.R., Cretu D.M., Negru E. et al. Comparative analysis of total DNA isolation procedure from blood and hair follicle samples in goats // Rev. Rom. Med. Vet. 2021. V. 31 (4). P. 82–86.
- Henderson M.K., Goldring K., Simeon-Dubach D. Advancing professionalization of biobank business operations: performance and utilization // Biopreserv. Biobank. 2019. V. 17 (3). P. 213–218. https://doi.org/10.1089/bio.2019.0005
- Hollegaard M.V., Grauholm J., Nielsen R. et al. Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing // Mol. Genet. Metab. 2013. V. 110. P. 65–72. https://doi.org/10.1016/j.ymgme.2013.06.004
- Irwin N., Wessel L., Blackburn H. The Animal Genetic Resources Information Network (Animal GRIN) database: a database design and implementation case // J. Inform. Syst. Educ. 2012. V. 23. P. 19–27.
- Johnson L.A. Ethical challenges in population genetics research // J. Ethics. 2020. V. 24. P. 405–423. https://doi.org/10.1007/s10892-020-09338-3
- Kumar A., Mhatre S., Godbole S. et al. Optimization of extraction of genomic DNA from archived dried blood spot (DBS): potential application in epidemiological research & bio banking // Gates Open Res. 2019. V. 2. P. 57. https://doi.org/10.12688/gatesopenres.12855.3
- Lall G.K., Darby A.C., Nystedt B. et al. Amplified fragment length polymorphism (AFLP) analysis of closely related wild and captive tsetse fly (Glossina morsitans morsitans) populations // Parasit. Vectors. 2010. V. 3. P. 47. https://doi.org/10.1186/1756-3305-3-47
- Lindahl T. Instability and decay of the primary structure of DNA // Nature. 1993. V. 362. P. 709–715.
- Linsen L., Van Landuyt K., Ectors N. Automated sample storage in biobanking to enhance translational research: the bumpy road to implementation // Front. Med. 2020. V. 6. P. 309. https://doi.org/10.3389/fmed.2019.00309
- Liu Y.F., Gao J.L., Yang Y.F. et al. Novel extraction method of genomic DNA suitable for long-fragment amplification from small amounts of milk // J. Dairy Sci. 2014. V. 97 (11). P. 6804–6809. https://doi.org/10.3168/jds.2014-8066
- Lou J.J., Mirsadraei L., Sanchez D.E. et al. A review of room temperature storage of biospecimen tissue and nucleic acids for anatomic pathology laboratories and biorepositories // Clin. Biochem. 2014. V. 47. P. 267–273. https://doi.org/10.1016/j.clinbiochem.2013.12.011
- Love Stowell S.M., Bentley E.G., Gagne R.B. et al. Optimal DNA extractions from blood on preservation paper limits conservation genomic but not conservation genetic applications // J. Nat. Conserv. 2018. V. 46. P. 89–96. https://doi.org/10.1016/j.jnc.2018.09.004
- Maksudov G.Y., Shishova N.V., Katkov I.I. In the cycle of life: cryopreservation of post-mortem sperm as a valuable source in restoration of rare and endangered species // Endangered species: new research. 1st ed. Ch. 8 / Ed. A.M. Columbus, L.V. Kuznetsov. NOVA Publishers, 2009. P. 189–240.
- McClendon-Weary B., Putnick D.L., Robinson S., Yeung E. Little to give, much to gain–what can you do with a dried blood spot? // Curr. Environ. Health Rep. 2020. V. 7 (3). P. 211–221. https://doi.org/10.1007/s40572-020-00289-y
- McManus C.M., Hermuche P., Guimarães R.F. et al. Integration of georeferenced and genetic data for the management of biodiversity in sheep genetic resources in Brazil // Trop. Anim. Health Prod. 2021. V. 53. P. 126. https://doi.org/10.1007/s11250-021-02573-x
- Miller G., Carmichael A., Favret C., Scheffer S. Room temperature DNA storage with slide-mounted aphid specimens // Insect. Conserv. Div. 2013. V. 6. P. 447–451. https://doi.org/10.1111/j.1752-4598.2012.00207.x
- Molteni C.G., Terranova L., Zampiero A. et al. Comparison of manual methods of extracting genomic DNA from dried blood spots collected on different cards: implications for clinical practice // Int. J. Immunopathol. Pharmacol. 2013. V. 3. P. 779–783. https://doi.org/ 10.1177/039463201302600324
- Muller R., Betsou F., Barnes M.G. et al. Preservation of biospecimens at ambient temperature: special focus on nucleic acids and opportunities for the biobanking community // Biopreserv. Biobank. 2016. V. 14 (2). P. 89–98. https://doi.org/10.1089/bio.2015.0022
- Owens C.B., Szalanski A.L. Filter paper for preservation, storage, and distribution of insect and pathogen DNA samples // J. Med. Entomol. 2005. V. 42. P. 709–711. https://doi.org/10.1093/jmedent/42.4.709
- Petrova E. Ethical aspects of biobanking in Russia // Med. Health Care Phil. 2020. V. 23. P. 207–212. https://doi.org/10.1007/s11019-019-09908-3
- Powell S., Molinolo A., Masmila E., Kaushal S. Real-time temperature mapping in ultra-low freezers as a standard quality assessment // Biopreserv. Biobank. 2019. V. 17. P. 139–142. https://doi.org/10.1089/bio.2018.0108
- Rijal R., Sharma R. Ethical considerations in using genetic data from indigenous animal breeds // J. Agric. Environ. Ethics. 2022. V. 35. P. 1005–1023. https://doi.org/10.1007/s10806-021-09806-4
- Sakai T., Ishii A., Segawa T. et al. Establishing conditions for the storage and elution of rabies virus RNA using FTA(®) cards // J. Vet. Med. Sci. 2015. V. 77. P. 461–465. https://doi.org/10.1292/jvms.14-0227
- Samsonova J.V., Saushkin N.Y., Osipov A.P. Dried Blood Spots technology for veterinary applications and biological investigations: technical aspects, retrospective analysis, ongoing status and future perspectives // Vet. Res. Comm. 2022 V. 46 (3). P. 655–698. https://doi.org/ 10.1007/s11259-022-09957-w
- Schiebelhut L.M., Abboud S.S., Gómez Daglio L.E. A comparison of DNA extraction methods for high-throughput DNA analyses // Mol. Ecol. Resour. 2017. V. 17. P. 721–729. https://doi.org/ 10.1111/1755-0998.12620
- Silva E.C., Pelinca M.A., Acosta A.C. et al. Comparative study of DNA extraction methodologies from goat sperm and its effects on polymerase chain reaction analysis // Genet. Mol. Res. 2014. V. 13 (3). P. 6070–6078. https://doi.org/10.4238/2014.August.7.21
- Sintasath D.M., Wolfe N.D., LeBreton M. et al. Simian T-lymphotropic virus diversity among nonhuman primates, Cameroon // Emerg. Infect. Dis. 2009. V. 15. P. 175–184. https://doi.org/10.3201/eid1502.080584
- Sjöholm M.I., Dillner J., Carlson J. Assessing quality and functionality of DNA from fresh and archival dried blood spots and recommendations for quality control guidelines // Clin. Chem. 2007. V. 53 (8). P. 1401–1407. https://doi.org/10.1373/clinchem.2007.087510
- Smith J.D., Johnson M. Ethical considerations in biobanking // J. Bioeth. Inquiry. 2021. V. 18. P. 181–190. https://doi.org/10.1007/s11673-021-10045-6
- Smith L., Burgoyne L. Collecting, archiving and processing DNA from wildlife samples using FTA® databasing paper // BMC Ecol. 2004. V. 4. Art. 4. https://doi.org/10.1186/1472-6785-4-4
- Spasskaya N.N., Voronkova V.N., Letarov A.V. et al. Features of reproduction in an isolated island population of the feral horses of the Lake Manych-Gudilo (Rostov region, Russia) // Appl. Anim. Behav. Sci. 2022. V. 254. Art. 105712. https://doi.org/10.1016/j.applanim.2022.105712
- Steinberg K., Beck J., Nickerson D. et al. DNA banking for epidemiologic studies: a review of current practices // Epidemiology. 2002. V. 13 (3). P. 246–254.
- Tani H., Tada Y., Sasai K., Baba E. Improvement of DNA extraction method for dried blood spots and comparison of four PCR methods for detection of Babesia gibsoni (Asian genotype) infection in canine blood samples // J. Vet. Med. Sci. 2008. V. 70. P. 461–467. https://doi.org/10.1292/jvms.70.461
- Venkatesh P., Gopal D. Rapid DNA extraction from dried milk spots: application in non-invasive detection of the A1/A2 variants of beta casein in cow // PNAS India Sect. B Biol. Sci. 2018. V. 88. P. 525–529. https://doi.org/10.1007/s40011-016-0781-4
- Wu H., de Gannes M.K., Luchetti G., Pilsner J.R. Rapid method for the isolation of mammalian sperm DNA // Biotechniques. 2015. V. 58 (6). P. 293–300. https://doi.org/10.2144/000114280
- Yu C., Zimmerman C., Stone R. et al. Using improved technology for filter paper-based blood collection to survey wild Sika deer for antibodies to hepatitis E virus // J. Virol. Meth. 2007. V. 142. P. 143–150. https://doi.org/10.1016/j.jviromet.2007.01.016
Supplementary files
