Coevolution of honeybees and humans — adaptive evolution of two species

Cover Page

Cite item

Full Text

Abstract

The questions of the evolution of the honey bee, the formation of their relationship with humans, as well as the consequences of domestication against the background of selection are discussed. The honey bee (Apis mellifera L.) originated more than 100 million years ago on the southern supercontinent Gondwana. The relationship between humans and honeybees began to form 10 thousand years ago. Before meeting man, the bee remained unchanged in its original form for hundreds of millions of years. Today, the species has been largely modified by domestication and is widely used not only for the production of honey, wax and royal jelly, but also for pollinating crops throughout the world. The evolution of A. mellifera began in Southeast Asia, and the formation of subspecies in North Africa, which later spread north to Western Asia and Northern Europe. The meeting of the honey bee with man led to revolutionary changes. Most of the subspecies of bees, formed about 100 thousand years ago, were lost as a result of hybridization due to human fault. This process contributed to the blurring of the geographical boundaries of the subspecies’ ranges and created new threats to the conservation of the biological and genetic diversity of bees. The use of local populations of honey bees has proven their advantages in the resistance of families to environmental factors compared to introduced bees. The selection of subspecies and ecotypes adapted to the conditions that shaped them during evolution plays an important role in the management of honey bees, since genetic diversity supports their evolutionary potential for adaptation. The history of the relationship between humans and the honey bee is a key aspect in understanding their modern ecological adaptation and for forming a further strategy for mutually beneficial relations. Modern man and bee, despite their apparent independence, have become mutually beneficial partners, capable, through cooperation, of increasing their adaptation, stability and survival in the modern world.

Full Text

Restricted Access

About the authors

R. A. Ilyasov

Koltsov Institute of Developmental Biology, Russian Academy of Sciences

Email: wener5791@yandex.ru
Russian Federation, Moscow

D. V. Boguslavsky

Koltsov Institute of Developmental Biology, Russian Academy of Sciences

Email: wener5791@yandex.ru
Russian Federation, Moscow

A. Y. Ilyasova

Koltsov Institute of Developmental Biology, Russian Academy of Sciences

Email: wener5791@yandex.ru
Russian Federation, Moscow

V. N. Sattarov

Akmulla Bashkir State Pedagogical University

Author for correspondence.
Email: wener5791@yandex.ru
Russian Federation, Republic of Bashkortostan, Ufa

A. G. Mannapov

Timiryazev Russian State Agrarian University — Moscow Agricultural Academy

Email: wener5791@yandex.ru
Russian Federation, Moscow

References

  1. Вахитов Р.Ш. Пчелы и люди. Записки башкирского пчеловода. Уфа: Башкирское кн. изд-во, 1992. 287 с.
  2. Ильясов Р.А., Николенко А.Г., Сайфуллина Н.М. Темная лесная пчела Apis mellifera mellifera L. Республики Башкортостан. М.: КМК, 2016. 320 с.
  3. Небольсин П. Рассказы проезжего. СПб.: тип. Штаба воен.-учеб. заведений, 1854. 345 с.
  4. Петров Е.М. Об истоках лесного пчеловодства Башкортостана. 2-е изд., перераб. и доп. Уфа: Китап, 2009. 238 с.
  5. Прокопович П.И. Об учениках башкирах в школе пчеловодства господина Прокоповича // Земледельческий журн. 1838. V. 6. P. 35–45.
  6. Рычков П.И. Топография Оренбургская: То есть: обстоятельное описание Оренбургской губернии / Сочиненное коллежским советником и Императорской Академии наук корреспондентом Петром Рычковым. СПб.: При Имп. Акад. наук, 1762. Ч. 1. 331 с. Ч. 2. 262 с.
  7. Aizen M.A., Harder L.D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination // Curr. Biol. 2009. V. 19 (11). P. 915–918. https://doi.org/10.1016/j.cub.2009.03.071
  8. Akkaya H., Alkan S. Beekeeping in Anatolia from the Hittites to the present day // J. Apic. Res. 2007. V. 46 (2). P. 120–124. https://doi.org/10.3896/IBRA.1.46.2.10
  9. Alburaki M., Bertrand B., Legout, H. et al. A fifth major genetic group among honeybees revealed in Syria // BMC Genet. 2013. V. 14. P. 117. https://doi.org/10.1186/1471-2156-14-117
  10. Alburaki M., Moulin S., Legout H.E.E. et al. Mitochondrial structure of eastern honeybee populations from Syria, Lebanon and Iraq // Apidologie. 2011. V. 42 (5). P. 628–641. https://doi.org/10.1007/s13592-011-0062-4
  11. Allendorf F.W., Luikart G., Aitken S.N. Conservation and the genetics of populations. Hoboken: John Wiley & Sons, 2012. 664 p.
  12. Almeida E.A.B., Bossert S., Danforth B.N. et al. The evolutionary history of bees in time and space // Curr. Biol. 2023. V. 33 (16). P. 3409–3422. https://doi.org/10.1016/j.cub.2023.07.005
  13. Arias M.C., Sheppard W.S. Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence // Mol. Phylogenet. Evol. 1996. V. 5 (3). P. 557–566. https://doi.org/10.1006/mpev.1996.0050
  14. Arias M.C., Sheppard W.S. Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data // Mol. Phylogenet. Evol. 2005. V. 37 (1). P. 25–35. https://doi.org/10.1016/j.ympev.2005.02.017
  15. Avery M. The exultet rolls of Italy. Princeton, NJ: Princeton Univ. Press, 1936. V. 2. 53 p.
  16. Beltran A. Rock art of the Spanish levant. Cambridge: Cambridge Univ. Press, 1982. 160 p.
  17. Bloch G., Francoy T.M., Wachtel I. et al. Industrial apiculture in the Jordan valley during Biblical times with Anatolian honeybees // PNAS USA. 2010. V. 107 (25). P. 11240–11244. https://doi.org/10.1073/pnas.1003265107
  18. Boesch C., Head J., Robbins M.M. Complex tool sets for honey extraction among chimpanzees in Loango National Park, Gabon // J. Hum. Evol. 2009., V. 6. P. 560–569. https://doi.org/10.1016/j.jhevol.2009.04.001
  19. Borst L.P. The history of bee breeding // Am. Bee J. 2012. V. 7. P. 679–683.
  20. Bossert S., Murray E.A., Almeida E.A.B. et al. Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae // Mol. Phylogenet. Evol. 2019. V. 130. P. 121–131. https://doi.org/10.1016/j.ympev.2018.10.012
  21. Brady S.G., Sipes S., Pearson A., Danforth B.N. Recent and simultaneous origins of eusociality in halictid bees // Proc. Biol. Sci. 2006. V. 273 (1594). P. 1643–1649. https://doi.org/10.1098/rspb.2006.3496
  22. Brother A. Beekeeping at Buckfast Abbey with a section on mead making / Northern bee books. United Kingdom: Hebden Bridge, 1987. 122 p.
  23. Büchler R., Costa C., Hatjina F. et al. The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe // J. Apic. Res. 2014. V. 53 (2). P. 205–214. https://doi.org/10.3896/IBRA.1.53.2.03
  24. Cardinal S., Danforth B.N. Bees diversified in the age of eudicots // Proc. Biol. Sci. 2013. V. 280 (1755). P. 2012–2686. https://doi.org/10.1098/rspb.2012.2686
  25. Chapman N.C., Harpur B.A., Lim J. et al. Hybrid origins of Australian honeybees (Apis mellifera) // Apidologie. 2016. V. 47 (1). P. 26–34. https://doi.org/10.1007/s13592-015-0371-0
  26. Chapman N.C., Lim J., Oldroyd B.P. Population genetics of commercial and feral honey bees in Western Australia // J. Econom. Entomol. 2008. V. 101 (2). P. 272–277. https://doi.org/10.1093/jee/101.2.272
  27. Chen C., Liu Z., Pan Q. et al. Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n. ssp // Mol. Biol. Evol. 2016. V. 33 (5). P. 1337–1348. https://doi.org/10.1093/molbev/msw017
  28. Cilliers L., Retief F.P. Bees, honey and health in antiquity // Akroterion. 2012. V. 53 (2008). P. 7–19. https://doi.org/10.7445/53-0-36
  29. Cobey S., Sheppard W.S., Tarpy D.R. Status of breeding practices and genetic diversity in domestic US honey bees / Honey bee colony health: challenges and sustainable solutions. Boca Raton, FL: CRC, 2012. P. 39–49.
  30. Columella L.J.M. Lucius Junius Moderatus Columella on agriculture. Cambridge, MA: Harvard Univ. Press, 1941. V. II. 532 p.
  31. Costa C., Büchler R., Berg S. et al. A Europe-wide experiment for assessing the impact of genotype-environment interactions on the vitality and performance of honey bee colonies: experimental design and trait evaluation // J. Apic. Sci. 2012. V. 56 (1). P. 147–158. https://doi.org/10.2478/v10289-012-0015-9
  32. Crane E. For those interested in history // Bee World. 1971. V. 52 (2). P. 80–81.
  33. Crane E. Honey: a comprehensive survey. L.: Heinemann, 1975. 608 p.
  34. Crane E. Wall hives and wall beekeeping // Bee World. 1998. V. 79 (1). P. 11–22.
  35. Crane E. The world history of beekeeping and honey hunting. New York: Routledge, 1999, 675 p.
  36. Crane E., Graham A.J. Bee hives of the Ancient World // Bee World. 1985. V. 66 (1). P. 23–41.
  37. Crane E., Walker P. Evidence on Welsh beekeeping in the past // Folk Life. 1985. V. 23 (1). P. 21–48. https://doi.org/10.1179/flk.1984.23.1.21
  38. Crane E., Walker P. Early English beekeeping: the evidence from local records up to the end of the Norman period // Local Historian. 1999. V. 29 (3). P. 130–151.
  39. Crickette M., Sanz C.M., Morgan D.B. Flexible and persistent tool-using strategies in honey-gathering by wild chimpanzees // Int. J. Primatol. 2009. V. 30 (3). P. 411–427. https://doi.org/10.1007/s10764-009-9350-5
  40. Dalley S. Mari and Karana: two old Babylonian cities. Piscataway, New Jersey: Gorgias Press LLC, 2002. 203 p.
  41. Danforth B.N. Evolution of sociality in a primitively eusocial lineage of bees // PNAS USA. 2002. V. 99 (1). P. 286–290. https://doi.org/10.1073/pnas.012387999
  42. Danforth B.N., Minckley R.L., Neff J.L. The solitary bees: biology, evolution, conservation. Princeton, NJ: Princeton Univ. Press, 2019. 488 p. https://doi.org/10.1016/j.baae.2020.01.001
  43. Danforth B.N., Sipes S., Fang J., Brady S.G. The history of early bee diversification based on five genes plus morphology // PNAS USA. 2006. V. 103 (41). P. 15118–15123. https://doi.org/10.1073/pnas.0604033103
  44. Davies M., Kathirithamby J. Greek insects. Oxford, UK: Oxford Univ. Press, 1986. 211 p.
  45. De Jong D. Africanized honey bees in Brazil, forty years of adaptation and success // Bee world. 1996. V. 77 (2). P. 67–70. https://doi.org/10.1080/0005772X.1996.11099289
  46. De la Rúa P., Jaffé R., Dall’Olio R. et al. Biodiversity, conservation and current threats to European honeybees // Apidologie. 2009. V. 40 (3). P. 263–284. https://doi.org/10.1051/apido/2009027
  47. Delaney D.A., Meixner M.D., Schiff N.M., Sheppard W.S. Genetic characterization of commercial honey bee (Hymenoptera: Apidae) populations in the United States by using mitochondrial and microsatellite markers // Ann. Entomol. Soc. Am. 2009. V. 102 (4). P. 666–673. https://doi.org/10.1603/008.102.0411
  48. Diamond J. Evolution, consequences and future of plant and animal domestication // Nature. 2002. V. 418 (6898). P. 700–707. https://doi.org/10.1038/nature01019
  49. Dietemann V., Walter C., Pirk W., Crewe R. Is there a need for conservation of honeybees in Africa? // Apidologie. 2009. V. 40 (3). P. 285–295. https://doi.org/10.1051/apido/2009013
  50. Dogantzis K.A., Tiwari T., Conflitti I.M. et al. Thrice out of Asia and the adaptive radiation of the western honey bee // Sci Adv. 2021. V. 7 (49). eabj2151. https://doi.org/10.1126/sciadv.abj2151
  51. Dzierzon J. Gutachten über die von Hrn. Direktor Stöhr im ersten und zweiten Kapitel des General-Gutachtens aufgestellten Fragen // Bienen-Zeitung (Eichstädt). 1845. V. 1. P. 109–121.
  52. Engel M.S. The taxonomy of recent and fossil honey bees (Hymenoptera, Apidae, Apis) // J. Hymenoptera Res. 1999. V. 8. P. 165–196. https://doi.org/10.1007/978-1-4614-4960-7_18
  53. Engel M.S., Schultz T.R. Phylogeny and behavior in honey bees (Hymenoptera: Apidae) // Ann. Entomol. Soc. Am. 1997. V. 90 (1). P. 43–53. https://doi.org/10.1093/aesa/90.1.43
  54. Francis-Baker T. Bees and beekeeping. London, UK: Shire Publications, 2021. 83 p.
  55. Franck P., Garnery L., Celebrano G. et al. Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (Apis mellifera sicula) // Mol. Ecol. 2000. V. 9 (7). P. 907–921. https://doi.org/10.1046/j.1365-294X.2000.00945.x
  56. Franck P., Garnery L., Loiseau A. et al. Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data // Heredity. 2001. V. 86 (4). P. 420–430. https://doi.org/10.1046/j.1365-2540.2001.00842.x
  57. Frankham R., Ballou J.D., Briscoe D.A. et al. Introduction to conservation genetics. Cambridge: Cambridge Univ. Press, 2010. 344 p.
  58. Fraser H.M. Beekeeping in antiquity. London: Univ. of London Press, 1931. 157 p.
  59. Fraser H.M. History of beekeeping in Britain. London: Bee research association, 1958. 106 p.
  60. Freeman M.B. Lighting the Easter candle // Metropolitan Museum of Art Bull. 1945. V. 3. P. 194–200.
  61. Fries I., Imdorf A., Rosenkranz P. Survival of mite infested (Varroa destructor) honey bee (Apis mellifera) colonies in a Nordic climate // Apidologie. 2006. V. 37. P. 564–570. https://doi.org/10.1051/apido
  62. Galton D. Beeswax as an import in Mediaeval England // Bee World. 1971. V. 52 (2). P. 68–74. https://doi.org/10.1080/0005772X.1971.11097355
  63. Gary N.E. Chemical mating attractants in the queen honey bee // Science. 1962. V. 136 (3518). P. 773–774. https://doi.org/10.1126/science.136.3518.773
  64. Graystock P., Yates K., Evison S.E.F. et al. The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies // J. Appl. Ecol. 2013. V. 50 (5). P. 1207–1215. https://doi.org/10.1111/1365-2664.12134
  65. Groeneveld L.F., Kirkerud L.A., Dahle B. et al. Conservation of the dark bee (Apis mellifera mellifera): estimating C-lineage introgression in Nordic breeding stocks // Acta Agric. Scandinavica. A Anim. Sci. 2020. V. 69 (3). P. 157–168. https://doi.org/10.1080/09064702.2020.1770327
  66. Gruter C., Menezes C., Imperatriz-Fonseca V.L., Ratnieks F.L. A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee // PNAS USA. 2012. V. 109 (4). P. 1182–1186. https://doi.org/10.1073/pnas.1113398109
  67. Hadisoesilo S., Otis G.W. Drone flight times confirm the species status of Apis nigrocincta Smith, 1861 to be a species distinct from Apis cerana F, 1793, in Sulawesi, Indonesia // Apidologie. 1996. V. 27 (5). P. 361–369. https://doi.org/10.1051/apido:19960504
  68. Hadisoesilo S., Otis G.W., Meixner M. Two distinct populations of cavity-nesting honey bees (Hymenoptera, Apidae) in South Sulawesi, Indonesia // J. Kansas Entomol. Soc. 1995. V. 68. P. 399–407.
  69. Hall S.J., Bradley D.G. Conserving livestock breed biodiversity // Trends Ecol. Evol. 1995. V. 10 (7). P. 267–270. https://doi.org/10.1016/0169-5347(95)90005-5
  70. Han F., Wallberg A., Webster M.T. From where did the Western honey bee (Apis mellifera) originate? // Ecol. Evol. 2012. V. 2 (8). P. 1949–1957. https://doi.org/10.1002/ece3.312
  71. Harpur B.A., Chapman N.C., Krimus L. et al. Assessing patterns of admixture and ancestry in Canadian honey bees // Insectes Sociaux. 2015. V. 62 (4). P. 479–489. https://doi.org/10.1007/s00040-015-0427-1
  72. Harpur B.A., Kent C.F., Molodtsova D. et al. Population genomics of the honey bee reveals strong signatures of positive selection on worker traits // PNAS USA. 2014. V. 111 (7). P. 2614–2619. https://doi.org/10.1073/pnas.1315506111
  73. Hatjina F., Costa C., Büchler R. et al. Population dynamics of European honey bee genotypes under different environmental conditions // J. Apic. Res. 2014. V. 53 (2). P. 233–247. https://doi.org/10.3896/IBRA.1.53.2.05
  74. Hepburn H.R., Radloff S.E. Honeybees of Africa. Berlin Heidelberg: Springer, 1998.
  75. Herrod-Hempsall W. Bee-keeping new and old described with pen and camera. V. II. London: The British Bee Journal publisher, 1937. 772 p.
  76. Ilyasov R.A., Kosarev M.N., Neal A., Yumaguzhin F.G. Burzyan wild-hive honeybee A. m. mellifera in South Ural // Bee World. 2015. V. 92 (1). P. 7–11. https://doi.org/10.1080/0005772X.2015.1047634
  77. Ilyasov R.A., Lee M.L., Takahashi J.I. et al. A revision of subspecies structure of western honey bee Apis mellifera // Saudi J. Biol. Sci. 2020. V. 27 (12). P. 3615–3621. https://doi.org/10.1016/j.sjbs.2020.08.001
  78. Jaffé R., Dietemann V., Allsopp M.H. et al. Estimating the density of honey bee colonies across their natural range to fill the gap in pollinator decline censuses // Conserv. Biol. 2010. V. 24 (2). P. 583–593. https://doi.org/10.1111/j.1523-1739.2009.01331.x
  79. Johnson B.R., Linksvayer T.A. Deconstructing the superorganism: Social physiology, groundplans, and sociogenomics // Quart. Rev. Biol. 2010. V. 85 (1). P. 57–79. https://doi.org/10.1086/650290
  80. Johnson B.R. (Foreword by Seeley T.D.) Honey bee biology. Princeton, New Jersey, USA: Princeton Univ. Press, 2023. 489 p.
  81. Johnston R.A. All Things Medieval: An Encyclopedia of the Medieval World. V. 1. Santa Barbara, CA: ABC-CLIO, 2011. 790 p.
  82. Jones J.E., Graham A.J., Sackett L.H. An Attic country house below the cave of Pan at Vari. London, United Kingdom: Thames & Hudson Ltd., 1973. 97 p.
  83. Jones R. A short history of beekeeping in the Ukraine // Bee World. 2013. V. 90 (1). P. 12–14. https://doi.org/10.1080/0005772X.2013.11417518
  84. Kocher S.D., Li C., Yang W. et al. The draft genome of a socially polymorphic halictid bee, Lasioglossum albipes // Genome Biol. 2013. V. 14 (12). R142. https://doi.org/10.1186/gb-2013-14-12-r142
  85. Kritsky G. Lessons from history, the spread of the honey bee in North America // Am. Bee J. 1991. V. 131. P. 367–370.
  86. Kritsky G. The Quest for the Perfect Hive. New York: Oxford University Press, 2010. 216 p.
  87. Kritsky G. The tears of re: beekeeping in Ancient Egypt. New York: Oxford University Press, 2015. 160 p.
  88. Kritsky G. Beekeeping from Antiquity through the Middle Ages // Annu. Rev. Entomol. 2017. V. 62. P. 249–264. https://doi.org/10.1146/annurev-ento-031616-035115
  89. Laidlaw H.H. Artificial insemination of the queen bee (Apis mellifera L.): morphological basis and results // J. Morphol. 1944. V. 74. P. 429–465. https://doi.org/10.1002/jmor.1050740307
  90. Laidlaw J.H.H., Page R.E. Queen rearing and bee breeding. Cheshire: Wicwas press, 1997. https://api.semanticscholar.org/CorpusID:82811618
  91. Langstroth L. A practical treatise on the hive and the honey Bee. New York: CM Saxton and Company, 1857.
  92. Le Conte Y., de Vaublanc G., Crauser D. et al. Honey bee colonies that have survived Varroa destructor // Apidologie. 2007. V. 38 (6). P. 566–572. https://doi.org/10.1051/apido:2007040
  93. Lo N., Gloag R.S., Anderson D.L., Oldroyd B.P. A molecular phylogeny of the genus Apis suggests that the giant honey bee of the Philippines, A. breviligula Maa, and the plains honey bee of southern India, A. indica Fabricius, are valid species // Syst. Entomol. 2010. V. 35 (2). P. 226–233. https://doi.org/10.1111/j.1365-3113.2009.00504.x
  94. Lodesani M., Costa C. Bee breeding and genetics in Europe // Bee World. 2003. V. 84 (2). P. 69–85. https://doi.org/10.1080/0005772X.2003.11099579
  95. Lunde M. The History of Bees. New York, United States: Atria Books, 2017.
  96. Mattila H.R., Seeley T.D. Genetic diversity in honey bee colonies enhances productivity and fitness // Science. 2007. V. 317 (5836). P. 362–364. https://doi.org/10.1126/science.1143046
  97. Mazar A., Panitz-Cohen N. It is the land of honey: beekeeping at Tel Rehov // Near East. Archaeol. 2007. V. 70 (4). P. 202–219. https://doi.org/10.2307/20361335
  98. Meixner M.D., Costa C., Kryger P. et al. Conserving diversity and vitality for honey bee breeding // J. Apic. Res. 2010. V. 49 (1). P. 85–92. https://doi.org/10.3896/IBRA.1.49.1.12
  99. Meixner M.D., Leta M.A., Koeniger N., Fuchs S. The honey bees of Ethiopia represent a new subspecies of Apis mellifera — Apis mellifera simensis n. ssp. // Apidologie. 2011. V. 42 (3). P. 425–437. https://doi.org/10.1007/s13592-011-0007-y
  100. Meixner M.D., Pinto M.A., Bouga M. et al. Standard methods for characterising subspecies and ecotypes of Apis mellifera // J. Apic. Res. 2013. V. 52 (4). P. 1–28. https://doi.org/10.3896/IBRA.1.52.4.05
  101. Michener C.D. Comparative social behavior of bees // Annu. Rev. Entomol. 1969. V. 14 (1). P. 299–342. https://doi.org/10.1146/ANNUREV.EN.14.010169.001503
  102. Michener C.D. The social behavior of the bees. Cambridge, MA: Harvard Univ. Press, 1974. 404 p.
  103. Michener C.D. The bees of the world. Baltimore, London: John Hopkins Univ. Press, 2000. https://doi.org/10.1002/mmnz.20020780209
  104. Mikheyev A.S., Tin M.M.Y., Arora J., Seeley T.D. Museum samples reveal population genomic changes associated with a rapid evolutionary response by wild honey bees (Apis mellifera) to an introduced parasite // Nat. Commun. 2015. V. 6. 7991. https://doi.org/10.1038/ncomms8991
  105. Moritz R.F., Lattorff H.M., Neumann P. et al. Rare royal families in honeybees, Apis mellifera // Die Naturwissenschaften. 2005. V. 92 (10). P. 488–491. https://doi.org/10.1007/s00114-005-0025-6
  106. Moritz R.F.A., Kraus F.B., Kryger P., Crewe R.M. The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees // J. Insect Conserv. 2007. V. 11 (4). P. 391–397. https://doi.org/10.1007/s10841-006-9054-5
  107. Neumann P., Carreck N.L. Honey bee colony losses // J. Apic. Res. 2010. V. 49 (1). P. 1–6. https://doi.org/10.3896/IBRA.1.49.1.01
  108. Nolan W.J. Success in the artificial insemination of queen bees at the Bee Culture Laboratory // J. Econom. Entomol. 1929. V. 22. P. 544–551.
  109. Nye R. Beowulf. London: Orion Child. Books, 2004. 350 p.
  110. Oldroyd B.P. What’s killing American honey bees? // PLoS Biol. 2007. V. 5 (6). P. e168. https://doi.org/10.1371/journal.pbio.0050168
  111. Oldroyd B.P. Domestication of honey bees was associated with expansion of genetic diversity // Mol. Ecol. 2012. V. 21 (18). P. 4409–4411. https://doi.org/10.1111/j.1365-294X.2012.05641.x
  112. Oldroyd B.P., Fewell J.H. Genetic diversity promotes homeostasis in insect colonies // Trends Ecol. Evol. 2007. V. 22 (8). P. 408–413. https://doi.org/10.1016/j.tree.2007.06.001
  113. Oldroyd B.P., Wongsiri S. Asian honey bees (biology, conservation, and human interactions). Cambridge, Massachusetts and London, England: Harvard Univ. Press, 2006. 325 p.
  114. Oleksa A., Wilde J., Tofilski A. et al. Partial reproductive isolation between European subspecies of honey bees // Apidologie. 2013. V. 44 (5). P. 611–619. https://doi.org/10.1007/s13592-013-0212-y
  115. Oxley P.R., Oldroyd B.P. The genetic architecture of honeybee breeding // Advances in insect physiology / Ed. S.J. Simpson, J. Casas. Burlington: Academic Press, 2010. P. 83–118.
  116. Page R.E. The evolution of multiple mating behavior by honey bee queens (Apis mellifera L.) // Genetics. 1980. V. 96 (1). P. 263–273. https://doi.org/10.1093/genetics/96.1.263
  117. Parejo M., Wragg D., Gauthier L. et al. Using whole-genome sequence information to foster conservation efforts for the European dark honey bee, Apis mellifera mellifera // Front. Ecol. Evol. 2016. V. 4. P. 1–15. https://doi.org/10.3389/fevo.2016.00140
  118. Parker R., Melathopoulos A.P., White R. et al. Ecological adaptation of diverse honey bee (Apis mellifera) populations // PLoS One. 2010. V. 5 (6). P. e11096. https://doi.org/10.1371/journal.pone.0011096
  119. Pinto A.A., Teles B.R., Penteado-Dias A.M. First report of Phanerotoma bennetti Muesebeck (Hymenoptera, Braconidae, Cheloninae) parasitizing Hypsipyla grandella (Zeller) and Hypsipyla ferrealis Hampson (Lepidoptera, Pyralidae) in crabwood in Brazil // Braz. J. Biol. 2014. V. 74 (1). P. 264–265. https://doi.org/10.1590/1519-6984.23812
  120. Pinto M.A., Rubink W.L., Patton J.C. et al. Africanization in the United States: replacement of feral European honeybees (Apis mellifera L.) by an African hybrid swarm // Genetics. 2005. V. 170 (4). P. 1653–1665. https://doi.org/10.1534/genetics.104.035030
  121. Pirk C.W.W., Crewe R.M., Moritz R.F.A. Risks and benefits of the biological interface between managed and wild bee pollinators // Func. Ecol. 2017. V. 31 (1). P. 47–55. https://doi.org/10.1111/1365-2435.12768
  122. Pliny the Elder. The natural history // Book XXIX (Ch. XXXIX) / Eds J. Bostock, H.T. Riley, H.G. Bohn. 1855. 250 p.
  123. Raffiudin R., Crozier R.H. Phylogenetic analysis of honey bee behavioral evolution // Mol. Phylogenet. Evol. 2007. V. 43 (2). P. 543–552. https://doi.org/10.1016/j.ympev.2006.10.013
  124. Rangel J., Giresi M., Pinto M.A. et al. Africanization of a feral honey bee (Apis mellifera) population in South Texas: does a decade make a difference? // Ecol. Evol. 2016. V. 6 (7). P. 2158–2169. https://doi.org/10.1002/ece3.1974
  125. Ransome H.M. The sacred bee / Ancient times and folklore. New York: Dover Publications, 2004. 308 p.
  126. Requier F., Garnery L., Kohl P.L. et al. The conservation of native honey bees is crucial // Trends Ecol. Evol. 2019. V. 34 (9). P. 789–798. https://doi.org/10.1016/j.tree.2019.04.008
  127. Radford U.M. The wax images found in Exeter cathedral // Antiquaries J. 1949. V. 29 (3–4). P. 164–168. https://doi.org/10.1017/S0003581500017273
  128. Rinderer T.E., Stelszer J.A., Oldroyd B.P. et al. Hybridization between European and Africanized honey bees in the neotropical Yucatan Peninsula // Science. 1991. V. 253 (5017). P. 309–311. https://doi.org/10.1126/science.253.5017.309
  129. Roffet-Salque M., Regert M., Evershed R.P. et al. Widespread exploitation of the honeybee by early Neolithic farmers // Nature. 2015. V. 527 (7577). P. 226–230. https://doi.org/10.1038/nature15757
  130. Root A.I. The ABC of bee culture. Medina, Ohio, United States: A. I. Root Company, 1903. 472 p.
  131. Ruttner F. Biogeography and taxonomy of honeybees. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. 284 p.
  132. Saggs H.W.F. The might that was Assyria. London: Sidgwick and Jackson, 1984. 237 p.
  133. Samojlik T., Jedrzejewska B. Utilization of Białowieza Forest in the times of Jagiellonian dynasty and its traces in the contemporary forest environment // Sylwan. 2004. V. 148 (11). P. 37–50.
  134. Schiff N.M., Sheppard W.S. Genetic differentiation in the queen breeding population of the western United States // Apidologie. 1996. V. 27 (2). P. 77–86. https://doi.org/10.1051/apido:19960202
  135. Schiff N.M., Sheppard W.S., Loper G.M., Shimanuki H. Genetic diversity of feral honey bee (Hymenoptera: Apidae) populations in the Southern United States // Ann. Entomol. Soc. Am. 1994. V. 87 (6). P. 842–848. https://doi.org/10.1093/aesa/87.6.842
  136. Schneider S.S., Deeby T., Gilley D.C., DeGrandi-Hoffman G. Seasonal nest usurpation of European colonies by African swarms in Arizona, USA // Insectes Sociaux. 2004. V. 51 (4). P. 359–364. https://doi.org/10.1007/s00040-004-0753-1
  137. Seeley T.D. Honeybee ecology. 1985. 220 p. http://www.jstor.org/stable/j.ctt7zvpg1
  138. Seeley T.D. The wisdom of the hive: the social physiology of honey bee colonies. Cambridge, MA: Harvard Univ. Press, 1995. 318 p.
  139. Seeley T.D. The lives of bees: the untold story of the honey bee in the wild. Princeton, NJ: Princeton Univ. Press, 2019. 376 p. https://doi.org/0.1186/s12052-020-00131-x
  140. Seeley T.D., Tarpy D.R. Queen promiscuity lowers disease within honeybee colonies // Proc. Biol. Sci. 2007. V. 274 (1606). P. 67–72. https://doi.org/10.1098/rspb.2006.3702
  141. Sheppard W.S. Comparative study of enzyme polymorphism in United States and European honey bee (Hymenoptera: Apidae) populations // Ann. Entomol. Soc. Am. 1988. V. 81 (6). P. 886–889. https://doi.org/10.1093/aesa/81.6.886
  142. Sheppard W.S., Rinderer T.E., Garnery L., Shimanuki H. Further analysis of Africanized honey bee mitochondrial DNA reveals diversity of origin // Genet. Mol. Biol. 1999. V. 22 (1). P. 73–75. https://doi.org/10.1590/S1415-47571999000100015
  143. Smith A.R., Wcislo W.T., O’Donnell S. Assured fitness returns favor sociality in a mass provisioning sweat bee, Megalopta genalis (Hymenoptera: Halictidae) // Behav. Ecol. Sociobiol. 2003. V. 54. P. 14–21. https://doi.org/10.1007/s00265-003-0602-y
  144. Soland-Reckeweg G., Heckel G., Neumann P. et al. Gene flow in admixed populations and implications for the conservation of the Western honeybee, Apis mellifera // J. Insect Conserv. 2009. V. 13 (3). P. 317–328. https://doi.org/10.1007/s10841-008-9175-0
  145. Spivak M., Masterman R., Ross R., Mesce K.A. Hygienic behavior in the honey bee (Apis mellifera L.) and the modulatory role of octopamine // J. Neurobiol. 2002. V. 55 (3). P. 341–354. https://doi.org/10.1002/neu.10219
  146. Szabo T.I., Lefkovitch L.P. Effect of brood production and population size on honey production of honeybee colonies in Alberta, Canada // Apidologie. 1989. V. 20 (2). P. 157–163. https://doi.org/10.1051/apido:19890206
  147. Tarpy D.R. Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth // Proc. Royal Soc. L. Series B: Biol. Sci. 2003. V. 270 (1510). P. 99–103. https://doi.org/10.1098/rspb.2002.2199
  148. Tarpy D.R., Nielsen D.I. Sampling error, effective paternity, and estimating the genetic structure of honey bee colonies (Hymenoptera: Apidae) // Ann. Entomol. Soc. Am. 2002. V. 95 (4). P. 513–528. https://doi.org/10.1603/0013-8746(2002)095[0513:SEEPAE]2.0.CO;2
  149. Taxel I. Ceramic evidence for beekeeping in Palestine in the Mamluk and Ottoman periods // Levant. 2006. V. 38 (1). P. 203–212. https://doi.org/10.1179/lev.2006.38.1.203
  150. Thompson J.W. An economic and social history of the Middle Ages (300–1300). New York: Century Co., 1928. 900 p.
  151. Tihelka E., Cai C., Pisani D., Donoghue P.C.J. Mitochondrial genomes illuminate the evolutionary history of the Western honey bee (Apis mellifera) // Sci. Rep. 2020. V. 10 (1). P. 14515. https://doi.org/10.1038/s41598-020-71393-0
  152. Uzunov A., Meixner M.D., Kiprijanovska H. et al. Genetic structure of Apis mellifera macedonica in the Balkan peninsula based on microsatellite DNA polymorphism // J. Apic. Res. 2014. V. 53 (2). P. 288–295. https://doi.org/10.3896/IBRA.1.53.2.10
  153. Vanengelsdorp D., Evans J.D., Saegerman C. et al. Colony collapse disorder: a descriptive study // PLoS One. 2009. V. 4 (8). P. e6481. https://doi.org/10.1371/journal.pone.0006481
  154. Vanengelsdorp D., Meixner M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them // J. Invertebr. Pathol. 2010. V. 103. P. 80–95. https://doi.org/10.1016/j.jip.2009.06.011
  155. Varro M.T. De Re Rustica, on agriculture. Book III. London: Loeb Classical Library, 1934. 10 p.
  156. von Berlepsch A.F. Die Biene und ihre Zucht mit beweglichen Waben in Gegenden ohne Spätsommertracht. Mannheim: Druck und Verlag von J. Schneider, 1869. 584 p.
  157. Wallberg A., Han F., Wellhagen G., Dahle B. et al. A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera // Nat. Genetics. 2014. V. 46 (10). P. 1081–1088. https://doi.org/10.1038/ng.3077
  158. Whitfield C.W., Behura S.K., Berlocher S.H. et al. Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera // Science. 2006. V. 314 (5799). P. 642–645. https://doi.org/10.1126/science.1132772
  159. Wilson W.T. Resistance to American foulbrood in honey bees. XI. Fate of Bacillus larvae spores ingested by adults // J. Invertebr. Pathol. 1971. V. 17 (2). P. 247–251. https://doi.org/10.1016/0022-2011 (71)90099-1
  160. Winston M.L. The biology of the honey bee. Harvard: University Press, 1991. 293 p.
  161. Witherell P.C. A story of success: the Starline and Midnite hybrid bee breeding programme // Am. Bee J. 1976. V. 116. P. 63–82.
  162. Woyke J., Wilde J., Phaincharoen M. First evidence of hygienic behaviour in the dwarf honey bee Apis florea // J. Apic. Res. 2012. V. 51 (4). 359–361. https://doi.org/10.3896/IBRA.1.51.4.11
  163. Yukuhiro K., Sezutsu H., Itoh M. et al. Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori // Mol. Biol. Evol. 2002. V. 19 (8). P. 1385–1389. https://doi.org/10.1093/oxfordjournals.molbev.a004200
  164. Zhou S., Morgante F., Geisz M.S. et al. Systems genetics of the Drosophila metabolome // Genome Res. 2020, V. 30 (3). P. 392–405. https://doi.org/10.1101/gr.243030.118

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Three scenarios for the dispersal of honey bee subspecies: I — hypothesis (Ruttner, 1988), II — hypothesis (Arias, Sheppard, 1996), III — hypothesis (Whitfield et al., 2006). M, C, A and O — evolutionary branches; 1–4 — order of geographic migration of bees.

Download (72KB)
3. Fig. 2. Modern forest beekeeping in the Burzyansky district of the Republic of Bashkortostan in the Southern Urals.

Download (132KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».