Analysis of the Distribution of Robertsonian Fusions in Polymorphic Populations of the Common Shrew, Sorex araneus L.

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We calculated the found and expected frequencies of metacentrics in polymorphic populations of the Dnieper basin common rodent, resulting from hybridization of local populations with acrocentric karyotype and four chromosomal races (Neroosa, Kiev, Białowieża, and Western Dvina) with 3–5 diagnostic metacentrics in each. We have previously shown an increased frequency of acrocentric karyotype compared to that expected according to Hardy-Weinberg. The low frequency (less than 0.5) of most metacentrics of the four chromosomal races and the disappearance of some of them from the populations can be explained by the increased fitness of the acrocentric karyotype and the absence of meiotic drive. On the contrary, the preservation of high frequency (more than 0.5) of such metacentrics as gm, hk (races of Western Dvina), hi (races of Kiev), hn, ik (races of Białowieża), and, especially, the fixation of metacentric hi (races of Neroosa) in polymorphic populations can be explained by meiotic drive. The fixation of Rb compounds in the range of the common rodent may be a consequence not only of gene drift, but also of meiotic drive. Most likely, meiotic drive is able to maintain the frequency of Rb compounds with the largest acrocentrics g, h, and i, which contributed to the widespread distribution of such compounds throughout the range of the common rodent.

Full Text

Restricted Access

About the authors

V. N. Orlov

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: ikryshchuk@yandex.by
Russian Federation, Moscow

I. A. Kryshchuk

Scientific and Practical Center for Bioresources, National Academy of Sciences of Belarus

Author for correspondence.
Email: ikryshchuk@yandex.by
Belarus, Minsk

E. V. Cherepanova

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: ikryshchuk@yandex.by
Russian Federation, Moscow

Y. M. Borisov

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: ikryshchuk@yandex.by
Russian Federation, Moscow

References

  1. Булатова Н.Ш., Наджафова Р.С., Крапивко Т.П. Внутривидовые филогенетические связи у Sorex araneus L.: южно-балтийская подгруппа хромосомных рас // Генетика. 2002. Т. 38 (1). С. 79–85.
  2. Еловичева Я.К. Палинология позднеледниковья и голоцена Белоруссии. Минск: Навука i тэхнiка, 1993. 94 с.
  3. Ли Ч. Введение в популяционную генетику. М.: Мир, 1978. 555 с.
  4. Маркова А.К., Пузаченко А.Ю. Комплексы млекопитающих максимальной стадии последнего оледенения (Last Glacial Maximum – LGM) (≤24 – ≥17 тыс.л.н.) // Эволюция экосистем Европы при переходе от плейстоцена к голоцену (24–8 тыс.л.н.) / Ред. А.К. Маркова, Т. ван Кольфсхотен. М.: КМК, 2008. С. 91–116.
  5. Орлов В.Н., Борисов Ю.М. Филогенетические связи популяций обыкновенной бурозубки (Sorex araneus, Insectivora) Белоруссии // Зоол. журн. 2009. Т. 88 (12). С. 1–9.
  6. Орлов В.Н., Козловский А.И., Балакирев А.Е., Борисов Ю.М. Эндемизм хромосомных рас обыкновенной бурозубки Sorex araneus L. и возможность сохранения рефугиумов в области покровного оледенения Поздневалдайской эпохи // ДАН. 2007. Т. 416 (6). С. 1–4.
  7. Орлов В.Н., Борисов Ю.М., Черепанова Е.В., Милишников А.Н. Ассортативное скрещивание в гибридных зонах хромосомной расы Западная Двина обыкновенной бурозубки Sorex araneus (Mammalia) // Докл. АН. 2013. Т. 451 (1). С. 110–113. [Orlov V.N., Borisov Yu.M., Cherepanova E.V., Milishnikov A.N. Assortative mating in the hybrid zones of the common shrew (Sorex araneus, Mammalia) chromosome race West Dvina // Dokl. Biol. Sci. 2013. V. 451 (1). P. 217–220.]
  8. Черепанова Е.В., Кривоногов Д.М., Щегольков А.В. и др. Формирование зон контакта хромосомных рас обыкновенной бурозубки (Sorex araneus, Soricomorpha) в бассейне Волги // Зоол. журн. 2018. Т. 97 (4). С. 723–734.
  9. Banaszek A., Taylor J.R.E., Ochocińska D., Chętnicki W. Robertsonian polymorphism in the common shrew (Sorex araneus L.) and selective advantage of heterozygotes indicated by their higher maximum metabolic rates // Heredity. 2009. V. 102. P. 155–162.
  10. Borisov Yu.M., Kryshchuk I.A., Cherepanova E.V. et al. Chromosomal polymorphism of populations of the common shrew, Sorex araneus L., in Belarus // Acta Theriol. 2014. V. 59 (2). P. 243–249.
  11. Borisov Yu.M., Gaiduchenko H.S., Cherepanova E.V. et al. The clinal variation of metacentric frequency in the populations of the common shrew, Sorex araneus L., in the Dnieper and Pripyat interfluve // Mammal Res. 2016. V. 61 (2). P. 269–277.
  12. Borisov Y.M., Kryshchuk I.A., Gaiduchenko H.S. et al. Karyotypic differentiation of populations of the common shrew Sorex araneus L. (Mammalia) in Belarus // Comp. Cytogenet. 2017. V. 11 (2). P. 359–373.
  13. Borodin P.M., Fedyk S., Chętnicki W. et al. Meiosis and fertility associated with chromosomal heterozygosity // Shrews, chromosomes and speciation (Cambridge studies in morphology and molecules: new paradigms in evolutionary biology) / Eds J. Searle, P. Polly, J. Zima. Ch. 7. Cambridge: Camb. Univ. Press, 2019. Р. 218–270.
  14. Brünner H., Turni H., Kapischke H.-J. et al. New Sorex araneus karyotypes from Germany and the postglacial recolonization of central Europe // Acta Theriol. 2002. V. 47 (3). P. 277–293.
  15. Bulatova N. Notable homologous variation in chromosomal races of the common shrew // Comp. Cytogenet. 2020. V. 14 (3). P. 313–318.
  16. Bulatova N., Searle J.B., Bystrakova N. et al. The diversity of chromosome races in Sorex araneus from European Russia // Acta Theriol. 2000. V. 45 (Suppl. 1). P. 33–46.
  17. Bulatova N., Biltueva L.S., Pavlova S.V. et al. Chromosomal differentiation in the common shrew and related species // Shrews, chromosomes and speciation (Cambridge studies in morphology and molecules: new paradigms in evolutionary biology) / Eds J. Searle, P. Polly, J. Zima. Ch. 5. Cambridge: Camb. Univ. Press, 2019. Р. 272–312.
  18. Fedyk S., Chętnicki W. Preferential segregation of metacentric chromosomes in simple Robertsonian heterozygotes of Sorex araneus // Heredity. 2007. V. 99. P. 545–552.
  19. Fredga K. Reconstruction of the postglacial colonization of Sorex araneus into northern Scandinavia based on karyotype studies, and the subdivision of the Abisko race into three // Russ. J. Theriol. 2007. V. 6. P. 85–96.
  20. Hausser J., Fedyk S., Fredga K. et al. Definition and nomenclature of chromosome races of Sorex araneus // Folia Zool. 1994. V. 43 (Suppl. 1). P. 1–9.
  21. Kryshchuk I.A., Orlov V.N., Cherepanova E.V., Borisov Yu.M. Unusual chromosomal polymorphism of the common shrew, Sorex araneus L., in southern Belarus // Comp. Cytogenet. 2021. V. 15 (2). P. 159–169.
  22. Mishta A.V., Searle J.B., Wójcik J.M. Karyotypic variation of the common shrew Sorex araneus in Belarus, Estonia, Latvia, Lithuania and Ukraine // Acta Theriol. 2000. V. 45 (Suppl. 1). P. 47–58.
  23. Orlov V.N., Kozlovsky A.I., Okulova N.M., Balakirev A.E. Postglacial recolonisation of European Russia by the common shrew Sorex araneus // Russ. J. Theriol. 2007. V. 6 (2). P. 97–104.
  24. Searle J.B. Preferential transmission in wild common shrews (Sorex araneus) heterozygous for Robertsonian rearrangements // Genetic. Res. 1986. V. 47. P. 147–148.
  25. Searle J.B. Chromosomal hybrid zones in eutherian mammals // Hybrid zones and the evolutionary process / Ed. R.G. Harrison. N.Y.: Oxford Univ. Press, 1993. P. 309–353.
  26. Sheftel B.I., Krysanov E.Y. Chromosome polymorphism of the Neroosa race (Sorex araneus) in the territory with radioactive pollution after the Chernobyl accident // 6th Meet. of the International Sorex araneus Cytogenetics Committee (ISACC) (Paris, September 3–7, 2002) / Ed. V. Volobuev. Paris, 2002. P. 29–30.
  27. White M.J.D. Some general problems of chromosomal evolution and speciation in animals // Surv. Biol. Prog. 1957. V. 3. P. 109–147.
  28. Wójcik J.M., Wójcik A.M., Zalewska H. Chromosome and allozyme variation of the common shrew, Sorex araneus, in different habitats // Evolution in the Sorex araneus Group: cytogenetic and molecular aspects / Proc. ISAACC’s 5th intern. meet. / Eds K. Fredga, J.B. Searle. Gillingham: Hereditas, 1996. P. 183–189.
  29. Wyttenbach A., Borodin P., Hausser J. Meiotic drive favors Robertsonian metacentric chromosomes in the common shrew (Sorex araneus, Insectivora, Mammalia) // Cytogenet. Cell Genet. 1998. V. 83. P. 199–206.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Points of capture of the common borer Sorex araneus with metacentrics of chromosomal races: Bi – Białowieża (circles), Wd – Western Dvina (triangles), Ki – Kiev (squares), Ne – Nerussa (rhombuses). The white square in the chromosomal race icon indicates the absence of one or more diagnostic metacentrics of the race in the karyotype of the population. The asterisk * marks samples with an acrocentric karyotype. The dotted line marks the borders of the states. The numbers of the collection points correspond to Table 1.

Download (232KB)
3. Fig. 2. G-colored karyotypes of the common borer from polymorphic populations in the basin of the Dnieper River, Belarus. (a) – karyotype with two diagnostic metacentrics hi, ko of the Kiev race, (b) – karyotype with two diagnostic metacentrics gm, hk of the Western Dvina race.

Download (90KB)
4. Fig. 3. The frequency of Non-Russian race metacentrics in the samples (according to the data given in Table 1, here and in Fig. 4-6).

Download (48KB)
5. Fig. 4. The frequency of metacentrics of the Kiev race in the samples.

Download (50KB)
6. Fig. 5. The frequency of Białowieża race metacentrics in the samples.

Download (59KB)
7. Fig. 6. The frequency of metacentrics of the Western Dvina race in the samples.

Download (56KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies