Soil Enzyme Activity in Natural and Ploughed Catenas as Parameters of Physiological State of Microbial Communities

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study of soil microbial biomass and enzymatic activity of natural and anthropogenically transformed ecosystems was carried out. The catenas of virgin luvisols and chernozems of the Belogorye Natural Reserve and the catenas of arable soils were studied under similar geomorphological and lithological conditions. The activities of enzymes involved in the cycles of carbon (β-glucosidase and xylosidase), nitrogen (chitinase), and phosphorus (acid and alkaline phosphatase) was studied. It has been established that a decrease in soil microbial biomass as a result of ploughing is not accompanied by an equivalent decrease in the enzymatic activity of the soil. Differences in the enzymatic activity of different soils types were revealed, which indicates differences in the structure of the microbial community and the type of phytocenoses. Patterns of changes in the enzymatic activity of soils in watershed areas, in the transit and accumulative parts of catenas have been established. The values of specific enzymes activities (enzymatic activities per unit of microbial biomass) were calculated. The obtained patterns of changes in the specific enzymatic activity of arable soils indicate that, despite the loss of organic matter and a decrease in microbial biomass as a result of plowing, the physiological efficiency of the microbial community of agrochernozem is higher than in virgin soil. High specific enzymatic activity in arable soils is associated with higher rate of enzyme production by soil microorganisms due to land use changes.

About the authors

E. V. Chernysheva

Pushchino Scientific Center for Biological Research, Russin Academy of Sciences,
Institute of Physicochemical and Biological Problems in Soil Science

Author for correspondence.
Email: e.chernyysheva@yandex.ru
Russia, Moscow region, Pushchino

K. S. Dushchanova

Pushchino Scientific Center for Biological Research, Russin Academy of Sciences,
Institute of Physicochemical and Biological Problems in Soil Science

Email: e.chernyysheva@yandex.ru
Russia, Moscow region, Pushchino

T. E. Khomutova

Pushchino Scientific Center for Biological Research, Russin Academy of Sciences,
Institute of Physicochemical and Biological Problems in Soil Science

Email: e.chernyysheva@yandex.ru
Russia, Moscow region, Pushchino

A. V. Borisov

Pushchino Scientific Center for Biological Research, Russin Academy of Sciences,
Institute of Physicochemical and Biological Problems in Soil Science

Email: e.chernyysheva@yandex.ru
Russia, Moscow region, Pushchino

References

  1. Аринушкина Е.В. Руководство по химическому анализу почв. М.: МГУ, 1970. 487 с.
  2. Базилевич Н.И. Биологическая продуктивность экосистем Северной Евразии. М.: Наука, 1993. 295 с.
  3. Дущанова К.С., Украинский П.А., Каширская Н.Н. и др. Биомасса и функциональное разнообразие микробных сообществ в катенах целинных и пахотных серых почв и черноземов // Почвоведение. 2023. (в печати)
  4. Игнатенко О.С., Собакинский В.Д. Некоторые итоги охраны растительности Стрелецкой степи // Эколого-ценотические и географические особенности растительности (к 100-летию В.В. Алехина) / Ред. А.Г. Воронов, Г.И. Дохман. М.: Наука, 1983. С. 99–106.
  5. Касаткина Г.А., Федорова Н.Н., Русаков А.В. Почвы и почвенный покров заповедника “Белогорье” // Вестн. СПбГУ. 2012. № 1. Сер. 3. Биол. С. 121–138.
  6. Лысак Л.В., Семенова Н.А., Буланкина М.А. и др. Бактерии в окультуренных почвах монастырей таежно-лесной зоны // Почвоведение. 2004. № 8. С. 976–985.
  7. Масютенко Н.П., Нагорная О.В., Лукьянчикова О.В. Влияние удобрений, типа севооборота, экспозиции склона и вида угодий на динамику содержания микробной биомассы в черноземе типичном // Агрохимия. 2009. № 5. С. 49–54.
  8. Мостовая А.С., Курганова И.Н., Лопес де Гереню В.О. и др. Изменение микробиологической активности серых лесных почв в процессе естественного лесовосстановления // Вестн. Воронеж. ГУ. Сер. Хим. Биол. Фарм. 2015. № 2. С. 64–72.
  9. Пастухов А.В., Кноблаух К., Яковлева Е.В., Каверин Д.А. Маркеры трансформации органического вещества в мерзлотных бугристых болотах на Европейском Северо-Востоке // Почвоведение. 2018. № 1. С. 48–61.
  10. Русаков А.В. Почвы и почвенный покров Ямской степи. СПб.: СПбГУ, 2012. 216 с.
  11. Собина А.С., Хачиков Э.А., Шмараева А.Н. и др. Биологическая активность чернозема обыкновенного через 5 лет после прекращения агрогенной обработки // Агрохим. вестн. 2022. № 1. С. 22–26.
  12. Счастная Л.С., Касаткина Г.А. Почвенно-географические исследования в заповеднике “Лес на Ворскле” – “Белогорье” // Вестн. СПбГУ. Сер. 3. Биол. 2006. № 1. С. 81–87.
  13. Теории и методы физики почв / Ред. Е.В. Шеин, Л.О. Карпачевский. М.: Гриф и К, 2007. 616 с.
  14. Украинский П.А., Щербаков К.В. Эрозионный рельеф участка Ямская степь (природный заповедник “Белогорье”) // Науки о земле. 2014. № 1–2. С. 84–91.
  15. Хазиев Ф.Х. Системно-экологический анализ ферментативной активности почв. М.: Наука, 1982. 204 с.
  16. Хомутова Т.Э., Демкин В.А. Оценка биомассы микробных сообществ почв сухих степей по содержанию в них фосфолипидов // Почвоведение. 2011. № 6. С. 748–754.
  17. Beheshti A., Raiesi F., Golchin A. Soil properties, C fractions and their dynamics in land use conversion from native forests to croplands in northern Iran // Agric. Ecosyst. Environ. 2012. V. 148. P. 121–133.
  18. Bergstrom D.W., Monreal C.M., Millette J.A., King D.J. Spatial dependence of soil enzyme activities along a slope // Soil Sci. Soc. Am. J. 1998. V. 62. P. 1302–1308.
  19. Bittman S., Forge T.A., Kowalenko C.G. Responses of the bacterial and fungal biomass in a grassland soil to multi-year applications of dairy manure slurry and fertilizer // Soil Biol. Biochem. 2005. V. 37. P. 613–623.
  20. Burns R.G., DeForest J.L., Marxsen J. et al. Soil enzymes in a changing environment: current knowledge and future directions // Soil Biol. Biochem. 2013. V. 58. P. 216–234.
  21. Cui Y., Bing H., Fang L. et al. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems // Plant Soil. 2019. V. 458. P. 7–20.
  22. De Medeiros E.V., De Alcantara Notaro K., De Barros J.A. et al. Absolute and specific enzymatic activities of sandy entisol from tropical dry forest, monoculture and intercropping areas // Soil Till. Res. 2015. V. 145. P. 208–215.
  23. Deng S., Popova I.E., Dick L., Dick R. Bench scale and microplate format assay of soil enzyme activities using spectroscopic and fluorometric approaches // Appl. Soil Ecol. 2013. V. 64. P. 84–90.
  24. Dengiz O., Kizilkaya R., Göl C., Hepşen Ş. Effects of different topographic positions on soil properties and soil enzymes activities // As. J. Chem. 2007. V. 19. P. 2295–2306.
  25. Guan H.L., Fan J.W., Lu X. Soil specific enzyme stoichiometry reflects nitrogen limitation of microorganisms under different types of vegetation restoration in the karst areas // Appl. Soil Ecol. 2022. V. 169. P. 104253.
  26. Jiang X., Wright A.L., Wang X., Liang F. Tillage-induced changes in fungal and bacterial biomass associated with soil aggregates: a long-term field study in a subtropical rice soil in China // Appl. Soil Ecol. 2011. V. 48. P. 168–173.
  27. Kivlin S.N., Treseder K.K. Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition // Biogeochemistry. 2014. V. 117. P. 23–37.
  28. Lagomarsino A., Benedetti A., Marinari S. et al. Soil organic C variability and microbial functions in a Mediterranean agro-forest ecosystem // Biol. Fertil. Soils. 2011. V. 47. P. 283–291.
  29. Margenot A.J., Nakayama Y., Parikh S.J. Methodological recommendations for optimizing assays of enzyme activities in soil samples // Soil Biol. Biochem. 2018. V. 125. P. 350–360.
  30. Marinari S., Antisari L.V. Effect of lithological substrate on microbial biomass and enzyme activity in brown soil profiles in the northern Apennines (Italy) // Pedobiologia. 2010. V. 53. P. 313–320.
  31. Nannipieri P., Giagnoni L., Landi L., Renella G. Role of phosphatase enzymes in soil // Phosphorus in action / Eds E. Bünemann, A. Oberson, E. Frossard. Berlin, Heidelberg: Springer, 2011. P. 215–243.
  32. Raiesi F., Beheshti A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran // Appl. Soil Ecol. 2014. V. 75. P. 63–70.
  33. Rosinger C., Rousk J., Sandén H. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms? – A critical assessment in two subtropical soils // Soil Biol. Biochem. 2019. V. 128. P. 115–126.
  34. Silva E.D., De Medeiros E.V., Duda G.P. et al. Seasonal effect of land use type on soil absolute and specific enzyme activities in a Brazilian semi-arid region // Catena. 2019. V. 172. P. 397–407.
  35. Sinsabaugh R.L., Moorhead D.L. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition // Soil Biol. Biochem. 1994. V. 26 (10). P. 1305–1311.
  36. Sinsabaugh R.L., Lauber C.L., Weintraub M.N. et al. Stoichiometry of soil enzyme activity at global scale // Ecol. Lett. 2008. V. 11. P. 1252–1264.
  37. Stott D.E., Andrews S.S., Liebig M.A. et al. Evaluation of β-glucosidase activity as a soil quality indicator for the soil management assessment framework // Soil Sci. Soc. Am. J. 2010. V. 74 (1). P. 107–119.
  38. Tischer A., Blagodatskaya E., Hamer U. Microbial community structure and resource availability drive the catalytic efficiency of soil enzymes under land-use change conditions // Soil Biol. Biochem. 2015. V. 89. P. 226–237.
  39. Wang M., Ji L., Shen F. et al. Differential responses of soil extracellular enzyme activity and stoichiometric ratios under different slope aspects and slope positions in Larix olgensis plantations // Forests. 2022. V. 13. P. 845.
  40. Wang Q., Wang S. Response of labile soil organic matter to changes in forest vegetation in subtropical regions // Appl. Soil Ecol. 2011. V. 47. P. 210–216.
  41. Wickings K., Grandy A.S., Kravchenko A.N. Going with the flow: landscape position drives differences in microbial biomass and activity in conventional, low input, and organic agricultural systems in the Midwestern US // Agric. Ecosyst. Environ. 2016. V. 218. P. 1–10.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (861KB)
3.

Download (465KB)
4.

Download (243KB)
5.

Download (405KB)
6.

Download (401KB)
7.

Download (255KB)

Copyright (c) 2023 Е.В. Чернышева, К.С. Дущанова, Т.Э. Хомутова, А.В. Борисов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies