Evaluation of Morphological Malformities and hsp70 Gene Response on Aristolochic Acid Exposed Neocaridina davidi (Red Shrimp)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In our study, we investigated morphological abnormalities and overexpression of one of the stress genes (hsp70) at different concentrations of Aristolochia extract.The plant material and animal for study was collected. The plant was mechanically grinded to prepare the infusion. The shrimp were acclimatized in a laboratory. Aristolochic acid (AA) exposure at concentrations 6000, 12 000, 18 000, 24 000 and 30 000 ppm to shrimp after 48 h, led to morphological malformations at 18 000 ppm concentration. Expression analysis revealed that the transcription of hsp70 was higher in 24 000 ppm (72 h) exposed N. davidi relating to control. The data obtained from the current study helps in better understanding of aristolochic acid induced toxicity, thus indicating the regulation of herbal products containing aristolochic acid in high concentration.

About the authors

Parvathy R

The Department of Biotechnology; Mar Athanasius College

Author for correspondence.
Email: parvathyrbinu@gmail.com
India, Kothamangalam, Kerala

Thomas Jithin

The Department of Biotechnology; Mar Athanasius College

Email: parvathyrbinu@gmail.com
India, Kothamangalam, Kerala

References

  1. Abhishiktha S.N., Saba S., Shrunga M.N. et al. Antimicrobial and radical scavenging efficacy of leaf and flower of Aristolochia indica Linn. // Sci. Technol. Arts Res. J. 2015. V. 4. P. 103–108. https://doi.org/10.4314/star.v4i1.17
  2. Al-Badran A.A., Fujiwara M., Mora M.A. Effects of insecticides, fipronil and imidacloprid, on the growth, survival, and behavior of brown shrimp Farfantepenaeus aztecus // PLoS One. 2019. V. 14. P. e0223641. https://doi.org/10.1371/journal.pone.0223641
  3. Bhattacharjee P., Bhattacharyya D. Characterization of the aqueous extract of the root of Aristolochia indica: evaluation of its traditional use as an antidote for snake bites // J. Ethnopharmacol. 2013. V. 145. P. 220–226. https://doi.org/10.1016/j.jep.2012.10.056
  4. Chen C.-H., Dickman K.G., Moriya M. et al. Aristolochic acid-associated urothelial cancer in Taiwan // PNAS USA. 2012. V. 109. P. 8241–8246. https://doi.org/10.1073/pnas.1119920109
  5. Das S., Mohapatra A., Sahoo P.K. Expression analysis of heat shock protein genes during Aeromonas hydrophila infection in rohu, Labeo rohita, with special reference to molecular characterization of Grp78 // Cell Stress Chaperones. 2015. V. 20. P. 73–84. https://doi.org/10.1007/s12192-014-0527-2
  6. Gökmen M.R., Cosyns J.-P., Arlt V.M. et al. The epidemiology, diagnosis, and management of aristolochic acid nephropathy: a narrative review // Ann. Inter. Med. 2013. V. 158. P. 469–477. https://doi.org/10.7326/0003-4819-158-6-201303190-00006
  7. Gupta S.C., Sharma A., Mishra M. et al. Heat shock proteins in toxicology: how close and how far? // Life Sci. 2010. V. 86. P. 377–384. https://doi.org/10.1016/j.lfs.2009.12.015
  8. Han J., Xian Z., Zhang Y. et al. Systematic overview of aristolochic acids: nephrotoxicity, carcinogenicity, and underlying mechanisms // Front. Pharmacol. 2019. V. 10. P. 648. https://doi.org/10.3389/fphar.2019.00648
  9. Hu X.L., Niu J.J., Meng Q. et al. Effects of two juvenile hormone analogue insecticides, fenoxycarb and methoprene, on Neocaridina davidi // Environ. Pollut. 2019. V. 253. P. 89–99. https://doi.org/10.1016/j.envpol.2019.06.120
  10. Jirovetz L., Buchbauer G., Puschmann C., Fleischhacker W. Analysis of the essential oil of the aerial parts of the medicinal plant Aristolochia indica Linn. (Aristolochiaceae) from South-India // Sci. Pharm. 2000. V. 68. P. 309–316. https://doi.org/10.3797/scipharm.aut-00-28
  11. Kanjilal P.B., Kotoky R., Couladis M. Chemical composition of the stem oil of Aristolochia indica L. // J. Essen. Oil Res. 2009. V. 21. P. 24–25. https://doi.org/10.1080/10412905.2009.9700098
  12. Lerma-Herrera M.A., Beiza-Granados L., Ochoa-Zarzosa A. et al. Biological activities of organic extracts of the genus Aristolochia: a review from 2005 to 2021 // Molecules. 2022. V. 27. P. 3937. https://doi.org/10.3390/molecules27123937
  13. Liang Z., Chen T., Yang F. et al. Toxicity of chronic waterborne zinc exposure in the hepatopancreas of white shrimp Litopenaeus vannamei // Chemosphere. 2022. V. 309. P. 136553. https://doi.org/10.1016/j.chemosphere.2022.136553
  14. Mahmood K., Jadoon S., Mahmood Q. et al. Synergistic effects of toxic elements on heat shock proteins // BioMed Res. Int. 2014. V. 2014. P. 564136. https://doi.org/10.1155/2014/564136
  15. Mei N., Arlt V.M., Phillips D.H. et al. DNA adduct formation and mutation induction by aristolochic acid in rat kidney and liver // Mutat. Res. 2006. V. 602. P. 83–91.
  16. Parolini M. Toxicity of the non-steroidal anti-inflammatory drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: a review // Sci. Total Environ. 2020. V. 740. P. 140043. https://doi.org/10.1016/j.scitotenv.2020.140043
  17. Rungrassamee W., Leelatanawit R., Jiravanichpaisal P. et al. Expression and distribution of three heat shock protein genes under heat shock stress and under exposure to Vibrio harveyi in Penaeus monodon // Dev. Comp. Immunol. 2010. V. 34. P. 1082–1089. https://doi.org/10.1016/j.dci.2010.05.012
  18. Shibutani S., Dong H., Suzuki N. et al. Selective toxicity of aristolochic acids I and II // Drug Metab. Dispos. 2007. V. 35. P. 1217–1222. https://doi.org/10.1124/dmd.107.014688
  19. Siregar P., Suryanto M.E., Chen K.H.-C. et al. Exploiting the freshwater shrimp Neocaridina denticulata as aquatic invertebrate model to evaluate nontargeted pesticide induced toxicity by investigating physiologic and biochemical parameters // Antioxidants. 2021. V. 10. P. 391. https://doi.org/10.3390/antiox10030391
  20. Soniya E.V., Sujitha M. An efficient in vitro propagation of Aristolochia indica // Biol. Plant. 2006. V. 50. P. 272–274.
  21. Tian Y., Niu J., Zhu Q. et al. Breeding of Tianfu broilers, Heilongjiang // Anim. Husb. Vet. Med. 2021. V. 6. P. 36–41.
  22. Venkateswara Rao J., Kavitha P., Jakka N.M. et al. Toxicity of organophosphates on morphology and locomotor behavior in brine shrimp, Artemia salina // Arch. Environ. Contam. Toxicol. 2007. V. 53. P. 227–232. https://doi.org/10.1007/s00244-006-0226-9
  23. Wang X., Giusti A., Ny A., Witte P.A. Nephrotoxic effects in zebrafish after prolonged exposure to aristolochic acid // Toxins. 2020. V. 12. P. 217. https://doi.org/10.3390/toxins12040217
  24. Xu D., Ran C., Yin L. et al. Acute and subchronic toxicity studies of aristolochic acid A in Tianfu broilers // Animals (Basel). 2021. V. 11 (6). P. 1556. https://doi.org/10.3390/ani11061556
  25. Yang L., Su T., Li X.-M. et al. Aristolochic acid nephropathy: variation in presentation and prognosis // Nephrol. Dial. Transplant. 2012. V. 27. P. 292–298.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (128KB)

Copyright (c) 2023 П. Р, Т. Джитин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies