The Effect of Gonads Maturation on Lysozyme of Pike Females Esox lucius (Esocidae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of the gonad development in the pike Esox lucius females on the quantitative parameters of the lysozyme, a component of nonspecific resistance, and the size of some the immune system organs was studied from September to April. The variability of the lysozyme concentration as an indicator of the amount of enzyme in a fixed dimension, as well as the total amount of lysozyme in the whole organ was evaluated. It is established that during the period of female maturation and gonad development the concentration of lysozyme in the serum and spleen significantly decreases. At this time, the size of the liver increases, and the spleen decreases, the kidney index remains unchanged. The concentration of lysozyme in the liver and serum is inversely correlated with the increase of the gonads, but the dependence on the gonads size is weak. The growth of the gonads and a significant increase in the size of the liver do not affect the lysozyme index of the liver, which reflects the total amount of the enzyme in this organ. It was found that the decrease in the enzyme concentration in the liver is proportional to the increase in the size of the organ. A direct relationship was found between the quantitative parameters of the lysozyme in the kidney and the total amount of the enzyme and the size of the spleen, therefore, a decrease in the concentration and total amount of lysozyme in the kidney may be a manifestation of the indirect effect of gonad maturation. The concentration of lysozyme in the serum showed a direct relationship with the water temperature of the water body, but such a relationship was not manifested in the organs. In the studied period, the quantitative parameters of the enzyme in the spleen and the relative size of the organ turned out to be more related to the water temperature than to the gonadosomatic index. The maturation of the gonads in females, combined with the external influence of temperature, has both a direct and indirect effect on the concentration of lysozyme in tissues. The concentration of tissue lysozyme as an indicator with a fixed dimension can be determined not only by the state of immunity, but also by changes in the size of organs. Determination of the total amount of lysozyme in the immune system organs increases the objectivity of assessing the influence of the physiological state of the organism on the nonspecific immunity of fish.

About the authors

M. F. Subbotkin

Papanin Institute of Inland Water Biology, Russian Academy of Sciences

Author for correspondence.
Email: smif@ibiw.ru
Russia, Yaroslavl oblast, Borok, Nekouzskii district

T. A. Subbotkina

Papanin Institute of Inland Water Biology, Russian Academy of Sciences

Email: smif@ibiw.ru
Russia, Yaroslavl oblast, Borok, Nekouzskii district

References

  1. Бурлаков И.А., Крючков В.Н., Волкова И.В. Реакция почек густеры (Blicca bjoerkna) дельты Волги на условия обитания // Вестн. АГТУ. Сер. Рыбное хоз-во. 2021. № 3. С. 142–149. https://doi.org/10.24143/2073-5529-2021-3-142-149
  2. Буторин Н.В., Курдина Т.Н., Бакастов С.С. Температура воды и грунтов Рыбинского водохранилища. Л.: Наука, 1982. 224 с.
  3. Иванова М.Н., Свирская А.Н. Рост мелких и крупных сеголеток щуки Esox lucius в последующие годы жизни в мелководных прудах // Вопр. ихтиол. 2005. Т. 45 (3). С. 380–388.
  4. Куровская Л.Я., Лысенко В.Н., Неборачек С.И. Морфофизиологические показатели некоторых видов осетровых рыб (Acipenseridae, Acipenseriformes) разного возраста, выращиваемые в аквакультуре // Рибогосподарська наука Украiни. 2015. № 1. С. 108–119.
  5. Никольский Г.В. Частная ихтиология. М.: Высшая школа, 1971. 471 с.
  6. Сакун О.Ф., Буцкая Н.А. Определение стадий зрелости и изучение половых циклов рыб. М.: Рыбное хоз-во, 1963. 36 с.
  7. Сергеева Н.П. Динамика массы индексов печени тресковых рыб восточной Камчатки в связи с созреванием гонад // Исследования водных биологических ресурсов Камчатки и северо-западной части Тихого океана. 2020. № 59. С. 5–26. https://doi.org/10.15853/2072-8212.2020.59.5-26
  8. Силкин Ю.А., Василец В.Е., Силкина Е.Н. и др. Морфофизиологические характеристики черноморского саргана (Belone belone euxini Günter, 1866) в посленерестовом периоде у берегов Юго-Восточного Крыма // Экосистемы. 2019. № 17. С. 77–86.
  9. Субботкин М.Ф., Субботкина Т.А. Изменчивость содержания лизоцима у леща Рыбинского водохранилища в разные сезоны годового цикла // Изв. РАН. Сер. биол. 2016. № 3. С. 309–314. https://doi.org/10.7868/S0002332916020090
  10. Субботкин М.Ф., Субботкина Т.А. Влияние кормления и кормовых добавок на лизоцим карповых рыб (Сем. Cyprinidae) // Успехи соврем. биол. 2018. Т. 138 (4). С. 409–424. https://doi.org/10.7868/S0042132418040075
  11. Субботкина Т.А., Субботкин М.Ф. Содержание лизоцима в органах и сыворотке крови у различных видов рыб р. Волги // Журн. эволюц. биохим. физиол. 2003. Т. 39 (5). С. 430–437.
  12. Abolfathi M., Akbarzadeh A., Hajimoradloo A., Joshaghani H.R. Seasonal changes of hydrolytic enzyme activities in the skin mucus of rainbow trout, Oncorhynchus mykiss at different body sizes // Dev. Comp. Immunol. 2020. V. 103. P. 103499. https://doi.org/10.1016/j.dci.2019.103499
  13. Bennett P.M., Janz D.M. Seasonal changes in morphometric and biochemical endpoints in northern pike (Esox lucius), burbot (Lota lota) and slimy sculpin (Cottus cognatus) // Freshwat. Biol. 2007. V. 52. P. 2056–2072. https://doi.org/10.1111/j.1365-2427.2007.01819.x
  14. Bowden T.J. Modulation of the immune system of fish by their environment // Fish Shellfish Immunol. 2008. V. 25 (4). P. 373–383. https://doi.org/10.1016/j.fsi.2008.03.017
  15. Hansson T., Lindesjoo E., Forlin L. et al. Long-term monitoring of the health status of female perch (Perca fluviatilis) in the Baltic sea shows decreased gonad weight and increased hepatic EROD activity // Aquat. Toxicol. 2006. V. 79. P. 341–355. https://doi.org/10.1016/j.aquatox.2006.07.001
  16. Heidari B., Farzadfar F. Effects of temperature and gonadal growth on the lysozyme level of immune tissues in the male and female Caspian kutum (Rutilus frisii kutum) // Aquacult. Res. 2017. V. 48 (2). P. 377–385. https://doi.org/10.1111/are.12886
  17. Ghafoori Z., Heidari B., Farzadfar F., Aghamaali M. Variations of serum and mucus lysozyme activity and total protein content in the male and female Caspian kutum (Rutilus frisii kutum, Kamensky 1901) during reproductive period // Fish Shellfish Immunol. 2014. V. 37 (1). P. 139–146. https://doi.org/10.1016/j.fsi.2014.01.016
  18. Kortet T.R., Taskinen J., Sinisalo T., Jkinen I. Breeding-related seasonal changes in immunocompetence, health state and condition of the cyprinid fish, Rutilus rutilus L. // Biol. J. Linn. Soc. 2003. V. 78. P. 117–127. https://doi.org/10.1046/j.1095-8312.2003.00136.x
  19. Makrinos D.L., Bowden T.J. Natural environmental impacts on teleost immune function // Fish Shellfish Immunol. 2016. V. 53. P. 50–57. https://doi.org/10.1016/j.fsi.2016.03.008
  20. Medford B.A., Mackay W.C. Protein and lipid content of gonads, liver, and muscle of northern pike (Esox lucius) in relation to gonad growth // J. Fish. Fes. Board Can. 1978. V. 35. P. 213–219. https://doi.org/10.1139/f78-035
  21. Morgan A.L., Thompson K.D., Auchinachie N.A., Migaud H. The effect of seasonality on normal haematological and innate immune parameters of rainbow trout Oncorhynchus mykiss L. // Fish Shellfish Immunol. 2008. V. 25 (6). P. 791–799. https://doi.org/10.1016/j.fsi.2008.05.011
  22. Papezikova I., Mares J., Vojtek L. et al. Seasonal changes in immune parameters of rainbow trout (Oncorhynchus mykiss), brook trout (Salvelinus fontinalis) and brook trout × Arctic charr hybrids (Salvelinus fontinalis × Salvelinus alpines alpinus) // Fish Shellfish Immunol. 2016. V. 57. P. 400–405. https://doi.org/10.1016/j.fsi.2016.08.048
  23. Rohlenova K., Morand S., Hyršl P. et al. Are fish immune systems really affected by parasites? An immunoecological study of common carp (Cyprinus carpio) // Parasit. Vectors. 2011. V. 4. P. 120. https://doi.org/10.1186/1756-3305-4-120
  24. Viney M.E., Riley E.M., Buchanan K.L. Optimal immune responses: immunocompetence revisited // Trends Ecol. Evol. 2005. V. 20 (12). P. 665–669. https://doi.org/10.1016/j.tree.2005.10.003

Supplementary files


Copyright (c) 2023 М.Ф. Субботкин, Т.А. Субботкина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies