Structure of the Peritenons of the Paravertebral Tendons Treated by Hyaluronic Acid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The tendon sheaths (peritenones) of the paravertebral tendons of the tails of Wistar rats were studied using scanning electron microscopy. A phenomenological classification of the osteoid structures of the peritenons is given, with the identification of their persistent and permanent varieties. Sesamoid islets, needle-like and lamellar growths, rudiments of osteons are classified as persistent. Persistent osteoid structures are well prepared for transformations aimed at strengthening the intracellular matrix under mechanical stress. Permanent osteoid structures are microgranules and faceted deposits of calcium phosphates involved in structural and mechanical processes, hetero- and homogeneous nucleation. Hyaluronate loosens the matrix of sesamoid islets, which increases the mobility of sesamoid globules and creates the prerequisites for their directed migration to areas of increased mechanical stress and foci of possible mineralization of extracellular substance, including fibrillar collagen. Hyaluronate sticks together granules and deposits of structured calcium phosphates. contribute to their growth and fixation in areas of increased risk of mechanical stress. This is a fundamentally important adaptive mechanism for strengthening the tendon tissue, acting in advance.

About the authors

А. А. Gaidash

Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus

Author for correspondence.
Email: algaidashspb@gmail.com
Belarus, Minsk

V. K. Krut’ko

Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus

Email: algaidashspb@gmail.com
Belarus, Minsk

A. I. Kulak

Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus

Email: algaidashspb@gmail.com
Belarus, Minsk

O. N. Musskaya

Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus

Email: algaidashspb@gmail.com
Belarus, Minsk

K. V. Skrotskaya

Research Institute for Physical Chemical Problems, Belarusian State University

Email: algaidashspb@gmail.com
Belarus, Minsk

Yu. P. Tokalchik

Institute of Physiology, National Academy of Sciences of Belarus

Email: algaidashspb@gmail.com
Belarus, Minsk

V. A. Kulchitsky

Institute of Physiology, National Academy of Sciences of Belarus

Email: algaidashspb@gmail.com
Belarus, Minsk

References

  1. Гайдаш А.А., Крутько В.К., Блинова М.И. и др. Структура и физико-химические свойства паравертебральных сухожилий // Цитология. 2022. Т. 64. № 3. С. 249−261.
  2. Almond A., Deangelis P.L., Blundell C.D. Hyaluronan: the local solution conformation determined by NMR and computer modeling is close to a contracted left-handed 4-fold helix // J. Mol. Biol. 2006. V. 358 (5). P. 1256−1269.
  3. Amizuka N., Hasegawa T., Oda K. et al. Histology of epiphyseal cartilage calcification and endochondral ossification // Front. Biosci. 2012. V. 4 (6). P. 2085−2100.
  4. Amizuka N., Hasegawa T., Yamamoto T., Oda K. Microscopic aspects on biomineralization in bone // Clin. Calcium. 2014. V. 24 (2). P. 203−214.
  5. Anandagoda N., Ezra D.G., Cheema U. et al. Hyaluronan hydration generates three-dimensional meso-scale structure in engineered collagen tissues // J. R. Soc. Interface. 2012. V. 9 (75). P. 2680−2687.
  6. Benjamin M., Toumi H., Ralphs J.R. et al. Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load // J. Anat. 2006. V. 208. P. 471−490.
  7. Caspersen M.B., Roubroeks J.P., Qun L. et al. Thermal degradation and stability of sodium hyaluronate in solid state // Carbohydr. Polym. 2014. V. 107. P. 25−30.
  8. Cowman M.K., Schmidt T.A., Raghavan P., Stecco A. Viscoelastic properties of hyaluronan in physiological conditions // F1000Res. 2015. V. 4. P. 622−634.
  9. Donati A., Magnani A., Bonechi C. et al. Solution structure of hyaluronic acid oligomers by experimental and theoretical NMR, and molecular dynamics simulation // Biopolymers. 2001. V. 59 (6). P. 434−445.
  10. Frayssinet A., Petta D., Eglin D. et al. Development of collagen/hyaluronic acid-tyramine (COLL/THA) composite hydrogels with tunable gelling kinetic and THA content for the treatment of nucleus pulposus // Orthopaedic Proc. 2018. V. 100-B (14). P. 96.
  11. Gatej I., Popa M., Rinaudo M. Role of the pH on hyaluronan behavior in aqueous solution // Biomacromolecules. 2015. V. 6 (1). P. 61−67.
  12. Gemballa S., Ebmeyer L., Hagen K. et al. Evolutionary transformations of myoseptal tendons in gnathostomes // Proc. Biol. Sci. 2003. V. 270. P. 1229−1235.
  13. Hardingham T., Heng B.C., Gribbon P. Analysis of the concentrated solution properties of hyaluronan by confocal-frap show no evidence of chain-chain association // Hyaluronan / Proc. Int. Meet. (September 2000, North East Wales Institute). Cambridge: Woodhead Publ. Ltd., 2002. V. 1. P. 123−136.
  14. Hasegawa T., Yamamoto T., Tsuchiya E. et al. Ultrastructural and biochemical aspects of matrix vesicle-mediated mineralization // Jpn. Dent. Sci. Rev. 2017. V. 53. P. 34−45.
  15. Hoefting J.M., Cowman M.K., Matsuoka S., Balazs E.A. Temperature effect on the dynamic rheological characteristics of hyaluronan, hylan A and synvisc // Hyaluronan / Proc. Int. Meet. (September 2000, North East Wales Institute). Cambridge: Woodhead Publ. Ltd., 2002. V. 1. P. 103−108.
  16. Huang-Lee L.L., Wu J.H., Nimni M.E. Effects of hyaluronan on collagen fibrillar matrix contraction by fibroblasts // J. Biomed. Mater. Res. 1994. V. 28 (1). P. 123−132.
  17. Jansen K.A., Licup A.J., Sharma A. et al. The role of network architecture in collagen mechanics // Biophys. J. 2018. V. 114. P. 2665−2678.
  18. Kastelic J., Galeski A., Baer E. The multicomposite structure of tendon // Connect. Tiss. Res. 1978. V. 6. P. 11−23.
  19. Knepper P.A., Covici S., Fadel J.R. et al. Surface-tension properties of hyaluronic acid // J. Glaucoma. 1995. V. 4 (3). P. 194−199.
  20. Knill C.J., Kennedy J.F., Latif Y., Ellwood D. Effect of metal ions on the rheological flow profiles of hyaluronate solutions // Hyaluronan / Proc. Int. Meet. (September 2000, North East Wales Institute). Cambridge: Woodhead Publ. Ltd., 2002. V. 1. P. 175−180.
  21. Kraft D., Bindslev D., Melsen B. et al. Mechano-sensitivity of dental pulp stem cells is related to their osteogenic maturity European // Eur. J. Oral Sci. 2010. V. 118 (1). P. 29−38.
  22. Landis W.J., Silver F.H. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen // Cells Tiss. Organs. 2009. V. 189. P. 20−24.
  23. Lanir Y. Structure-strength relations in mammalian tendon // Biophys. J. 1978. V. 24. P. 541−554.
  24. Mikelsaar R.H., Scott J.E. Molecular modelling of secondary and tertiary structures of hyaluronan, compared with electron microscopy and NMR data. Possible sheets and tubular structures in aqueous solution // Glycoconj. J. 1994. V. 11 (2). P. 65−71.
  25. Nonogaki T., Xu S., Kugimiya S.M. et al. Two dimensional auto-organized nanostructure formation of hyaluronate on bovine serum albumin monolayer and its surface tension // Langmuir. 2000. V. 16 (9). P. 4272−4278.
  26. Nudelman F., Pieterse K., George A. et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors // Nat. Mater. 2010. V. 9. P. 1004−1009.
  27. Prusova A., Šmejkalová D., Chytil M. et al. An alternative DSC approach to study hydration of hyaluronan // Carbohydr. Polymers. 2010. V. 82 (2). P. 498−503.
  28. Scott J.E., Cummings C., Brass A., Chen Y. Secondary and tertiary structures of hyaluronan in aqueous solution, investigated by rotary shadowing-electron microscopy and computer simulation. Hyaluronan is a very efficient network-forming polymer // Biochem. J. 1991. V. 274. P. 699−705.
  29. Shimazu A., Jikko A., Iwamoto M. et al. Effects of hyaluronic acid on the release of proteoglycan from the cell matrix in rabbit chondrocyte cultures in the presence and absence of cytokines // Arthritis Rheum. 1993. V. 36 (2). P. 247−253.
  30. Suh H., Lee J.E. Behavior of fibroblasts on a porous hyaluronic acid incorporated collagen matrix // Yonsei Med. J. 2002. V. 43 (2). P. 193−202.
  31. Summers A.P., Koob T.J. The evolution of tendon − morphology and material properties // Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2002. V. 133. P. 1159−1170.
  32. Wu T., Yin F., Wang N. et al. Involvement of mechanosensitive ion channels in the effects of mechanical stretch induces osteogenic differentiation in mouse bone marrow mesenchymal stem cells // J. Cell. Physiol. 2021. V. 236 (1). P. 284−293.

Supplementary files


Copyright (c) 2023 А.А. Гайдаш, В.К. Крутько, А.И. Кулак, О.Н. Мусская, К.В. Скроцкая, Ю.П. Токальчик, В.А. Кульчицкий

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies