Post-Covid Syndrome: Pathophysiology of Systemic Disregulations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The main processes that characterize the post-COVID syndrome are analyzed as a version of the “prolonged” pathology of acute COVID-19. Considering the variety of manifestations of post-covid pathology, the main blocks of systemic, cellular and molecular dysregulations are distinguished. As the main reasons, the following are considered: the consequences of systemic and organ damage in the acute phase of COVID-19, the persistent activity of “hidden” pathogens and the altered status of the patient’s protective immune systems. Long-term pathology, as a multisystem syndrome, reflects disturbances in the main cellular and molecular regulatory systems: stochastic disorganization of immune responses, vascular endothelial dysfunction, cellular inflammation, imbalance of coagulation and antithrombosis systems, deviations in autoimmune processes, etc. These findings orient new cellular and biochemical targets for timely therapy. The varied nature of the symptoms suggests a selective use of therapeutic approaches.

About the authors

O. A. Gomazkov

Orekhovich Research Institute of Biomedical Chemistry

Author for correspondence.
Email: oleg-gomazkov@yandex.ru
Russia, Moscow

References

  1. Болиева Л.З., Малявин А.Г., Вялкова А.Б. Длительная персистенция вируса SARS-CoV-2 в организме как возможный механизм патогенеза долгого COVID-19 // Терапия. 2022. Т. 8 (10). С. 90–97.
  2. Гомазков О.А. Covid-19. Патогенез сосудистых поражений, или дьявол кроется в деталях. 2021. М.: ИКАР, 72 с.
  3. Гомазков О.А. Нейротропизм как механизм поражающего действия коронавируса // Успехи соврем. биол. 2022. Т. 142 (4). С. 404–416.
  4. Макацария А.Д., Слуханчук Е.В., Бицадзе В.О. и др. Тромботический шторм, нарушения гемостаза и тромбовоспаление в условиях COVID-19 // Акушерство, гинекол. репрод. 2021. 15 (5). С. 499–514. https://doi.org/10.17749/2313-7347/ob.gyn.rep.2021.247
  5. Методические рекомендации “Особенности течения Long-COVID-19 инфекции. Терапевтические и реабилитационные мероприятия” / Ред. А.И. Мартынов (утверждены на ХVI Национальном Конгрессе терапевтов 18.11.2021). 217 с.
  6. Ackermann M, Verleden S.E., Kuehnel M. et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19 // N. Engl. J. Med. 2020. V. 383 (2). P. 120–128. https://doi.org/10.1056/NEJMoa2015432
  7. Ahamed J., Laurence J.J. Long COVID endotheliopathy: hypothesized mechanisms and potential therapeutic approaches // Clin. Invest. 2022. V. 132 (15). P. e161167.
  8. Ambrosino P., Bachetti T., D’Anna S.E. et al. Mechanisms and clinical implications of endothelial dysfunction in arterial hypertension // J. Cardiovasc. Dev. Dis. 2022. V. 9 (5). P. 136. https://doi.org/10.3390/jcdd9050136
  9. Amenta E.M., Spallone A., Rodriguez-Barradas M.C. et al. Post-acute COVID-19: an overview and approach to classification // Open Forum Infect. Dis. 2020. V. 7 (12). P. ofaa509. https://doi.org/10.1093/ ofid/ofaa509
  10. Ayoubkhani D., Khunti K., Nafilyan V. et al. Post-covid syndrome in individuals admitted to hospital with covid-19: retrospective cohort study // BMJ. 2021. V. 372. P. n693. https://doi.org/10.1136/bmj.n693
  11. Babkina A.S., Ostrova I.V., Yadgarov M.Y. et al. The role of von Willebrand factor in the pathogenesis of pulmonary vascular thrombosis in COVID-19 // Viruses. 2022. V. 14 (2). P. 211. https://doi.org/10.3390/v14020211
  12. Bogdanov V.Y., Khirmanov V.N. SARS-CoV-2, platelets, and endothelium: coexistence in space and time, or a pernicious ménage à trois? // Vasc. Biol. 2022. V. 4 (1). P. R35–R43. https://doi.org/10.1530/VB-22-0004
  13. Castanares-Zapatero D., Chalon P., Kohn L. et al. Pathophysiology and mechanism of long COVID: a comprehensive review // Ann. Med. 2022. V. 54 (1). P. 1473–1487. https://doi.org/10.1080/07853890.2022.2076901
  14. Chang H.W., Leu S., Sunet C.K. et al. Level and value of circulating endothelial progenitor cells in patients with acute myocardial infarction undergoing primary coronary angioplasty: in vivo and in vitro studies // Transl. Res. 2010. V. 156 (4). P. 251–263. https://doi.org/10.1016/j.trsl.2010.07.010
  15. Che Mohd Nassir C.M.N., Hashim S., Wong K.K. et al. COVID-19 infection and circulating microparticles – reviewing evidence as microthrombogenic risk factor for cerebral small vessel disease // Mol. Neurobiol. 2021. V. 58 (8). P. 4188–4215. https://doi.org/10.1007/s12035-021-02457-z
  16. Chen Y., Xu Z., Wang P. et al. New-onset autoimmune phenomena post-COVID-19 vaccination // Immunology. 2022. V. 165 (4). P. 386–401. https://doi.org/10.1111/imm.13443
  17. Chioh F.W., Fong S.W., Young B.E. Convalescent COVID-19 patients are susceptible to endothelial dysfunction due to persistent immune activation // Elife. 2021. V. 10. P. e64909. https://doi.org/10.7554/eLife.64909
  18. Datta S.D., Talwar A., Lee J.T. A proposed framework and timeline of the spectrum of disease due to SARS-CoV-2 infection:illness beyond acute infection and public health implications // JAMA. 2020. V. 324 (22). P. 2251–2252. https://doi.org/10.1001/jama.2020.22717
  19. DiSabato D.J., Quan N., Godbout J.P. Neuroinflammation: the devil is in the details // J. Neurochem. 2016. V. 139. Sup. 2. P. 136–153. https://doi.org/10.1111/jnc.13607
  20. Doeblin P., Steinbeis F., Scannell C.M. et al. Brief research report: quantitative analysis of potential coronary microvascular disease in suspected long-COVID syndrome // Front. Cardiovasc. Med. 2022. V. 9. P. 877416. https://doi.org/10.3389/fcvm.2022.877416
  21. Dorward D.A., Russell C.D, Um I.H. et al. Tissue-specific immunopathology in fatal COVID-19 // Am. J. Respir. Crit. Care Med. 2021. V. 203 (2). P. 192–201. https://doi.org/10.1164/rccm.202008-3265OC
  22. Dotan A., Muller S., Kanduc D. et al. The SARS-CoV-2 as an instrumental trigger of autoimmunity // Autoimmun. Rev. 2021. V. 20 (4). P. 102792. https://doi.org/10.1016/j.autrev.2021.102792
  23. Fogarty H., Ward S.E., Townsend L. et al. Sustained VWF-ADAMTS-13 axis imbalance and endotheliopathy in longCOVID syndrome is related to immune dysfunction // J. Thromb. Haemost. 2022. V. 20 (10). P. 2429–2438. https://doi.org/10.1111/jth.15830
  24. Fujinami R.S., von Herrath M.G., Christen U., Whittonl J.L. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease // Clin. Microbiol. Rev. 2006. V. 19. P. 80–94. https://doi.org/10.1128/CMR.19.1.80-94.2006
  25. Fujisawa T., Tura-Ceide O., Hunter A. et al. Endothelial progenitor cells do not originate from the bone marrow // Circulation. 2019. V. 140. P. 1524–1526.https://doi.org/10.1161/CIRCULATIONAHA.119.042351
  26. García-Abellán J., Fernández M., Padilla S. et al. Immunologic phenotype of patients with long-COVID syndrome of 1-year duration // Front. Immunol. 2022. V. 13. P. 920627. https://doi.org/10.3389/fimmu.2022.920627
  27. Gomazkov O.A. Damage of the vascular endothelium as a leading mechanism of COVID-19 systemic pathology // Biol. Bull. Rev. 2021. V. 11 (6). P. 559–566. https://doi.org/10.1134/S2079086421060049
  28. Gupta A., Madhavan M.V., Sehgal K. et al. Extrapulmonary manifestations of COVID-19 // Nat. Med. 2020. V. 26. P. 1017–1032. https://doi.org/10.1038/s41591-020-0968-3
  29. Haffke M., Freitag H., Rudolf G. et al. Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS) // J. Transl. Med. 2022. V. 20. P. 138. https://doi.org/10.1186/s12967-022-03346-2
  30. Iba T., Levy J.H., Levi M., Thachil J. Coagulopathy in COVID-19 // J. Thromb. Haemost. 2020. V. 18 (9). P. 2103–2109. https://doi.org/10.1111/jth.14975
  31. Jacobs J.J.L. Persistent SARS-2 infections contribute to long COVID-19 // Med. Hypotheses. 2021. V. 149. https://doi.org/10.1016/j.mehy.2021.110538
  32. Jud P., Gressenberger P., Muster V. et al. Evaluation of endothelial dysfunction and inflammatory vasculopathy after SARS-CoV-2 infection – a cross-sectional study // Front. Cardiovasc. Med. 2021. V. 8. P. 750887. https://doi.org/10.3389/fcvm.2021.750887
  33. Kell D.B., Laubscher G.J., Pretorius E. A central role for amyloid fibrin microclots in long COVID/PASC: origins and therapeutic implications // Biochem. J. 2022. V. 479 (4). P. 537–559. https://doi.org/10.1042/BCJ20220016
  34. Kemp S.A., Collier D.A., Datir R.P. et al. SARS-CoV-2 evolution during treatment of chronic infection // Nature. 2021. V. 592 (7853). P. 277–282. https://doi.org/10.1038/s41586-021-03291-y
  35. Khoshkam Z., Aftabi Y., Stenvinkel P. et al. Recovery scenario and immunity in COVID-19 disease: a new strategy to predict the potential of reinfection // J. Adv. Res. 2021. V. 31. P. 49–60. https://doi.org/10.1016/j.jare.2020.12.013
  36. Kostov K. The causal relationship between endothelin-1 and hypertension: focusing on endothelial dysfunction, arterial stiffness, vascular remodeling,and blood pressure regulation // Life (Basel). 2021. V. 11 (9). P. 986. https://doi.org/10.3390/ life11090986
  37. Koutroumpi M., Dimopoulos S., Psarra K. et al. Circulating endothelial and progenitor cells: evidence from acute and long-term exercise effects // World J. Cardiol. 2012. V. 4 (12). P. 312–326. https://doi.org/10.4330/wjc.v4.i12.312
  38. Kruger A., Vlok M., Turner S. et al. Proteomics of fibrin amyloid microclots in long COVID/post-acute sequelae of COVID-19 (PASC) shows many entrapped pro-inflammatory molecules that may also contribute to a failed fibrinolytic system // Cardiovasc. Diabetol. 2022. V. 21 (1). P. 190. https://doi.org/10.1186/s12933-022-01623-4
  39. Ladikou E.E., Sivaloganathan H., Milne K.M. et al. Von Willebrand factor (vWF): marker of endothelial damage and thrombotic risk in COVID-19? // Clin. Med. 2020. V. 20 (5). P. e178–e182. https://doi.org/10.7861/clinmed.2020-0346
  40. Liew A., Barry F., O’Brien T. Endothelial progenitor cells: diagnostic and therapeutic considerations // Bioessays. 2006. V. 28 (3). P. 261–270. https://doi.org/10.1002/bies.20372
  41. Liotti F.M., Menchinelli G., Marchetti S. et al. Assessment of SARS-CoV-2 RNA test results among patients who recovered from COVID-19 with prior negative results // JAMA Int. Med. 2020. V. 181. P. 702–704. https://doi.org/10.1001/jamainternmed.2020.7570
  42. Lowenstein C.J., Solomon S.D. Severe COVID-19 is a microvascular disease // Circulation. 2020. V. 142 (17). P. 1609–1611. https://doi.org/10.1161/CIRCULATIONAHA.120.050354
  43. Maltezou H.C., Pavli A., Tsakris A. Post-COVID syndrome: an insight on its pathogenesis // Vaccines (Basel). 2021. V. 9 (5). P. 497. https://doi.org/10.3390/vaccines9050497
  44. Mantovani A., Morrone M.C., Patronoet P. et al. Long Covid: where we stand and challenges ahead. Covid-19 Commission of the Accademia Nazionale dei Lincei // Cell Death Differ. 2022. V. 29 (10). P. 1891–1900. https://doi.org/10.1038/s41418-022-01052-6
  45. Mehandru S., Merad M. Pathological sequelae of long-haul Covid // Nat. Immunol. 2022. V. 23. P. 194–202. https://doi.org/10.1038/s41590-021-01104-y
  46. Ostergaard L. SARS CoV-2 related microvascular damage and symptoms during and after COVID-19: consequences of capillary transit-time changes, tissue hypoxia and inflammation // Physiol. Rep. 2021. V. 9 (3). P. e14726. https://doi.org/10.14814/phy2.14726
  47. Proal A.D., VanElzakker M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms // Front Microbiol. 2021. V. 12. P. 698169.
  48. Prasannan N., Heightman M., Hillman T. et al. Impaired exercise capacity in post-COVID-19 syndrome: the role of VWF-ADAMTS13 axis // Blood Adv. 2022. V. 6 (13). P. 4041–4048. https://doi.org/10.1182/bloodadvances.2021006944
  49. Priya S.P., Sunil P.V., Varmaet S. et al. Direct, indirect, post-infection damages induced by coronavirus in the human body: an overview // Virusdisease. 2022. V. 33 (4). P. 429–444. https://doi.org/10.1007/s13337-022-00793-9
  50. Puelles V.G., Lütgehetmann M., Lindenmeyer M.T. et al. Multiorgan and renal tropism of SARS-CoV-2 // New Engl. J. Med. 2020. V. 383. P. 590–592. https://doi.org/10.1056/NEJMc2011400
  51. Raman B., Cassar M.P., Tunnicliffe E.M. et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge // EClinicalMedicine. 2021. V. 31. Art.100683. https://doi.org/10.1016/j.eclinm.2020.100683
  52. Ryan F.J., Hope C.M., Masavuli M.G. et al. Long-term perturbation of the peripheral immune system after SARS-CoV-2 infection // BMC Med. 2022. V. 20 (1). P. 26. https://doi.org/10.1186/s12916-021-02228-6
  53. Sarkesh A., Sorkhabi A.D., Sheykhsaran E. et al. Extrapulmonary clinical manifestations in COVID-19 patients // Am. J. Trop. Med. Hyg. 2020. V. 103 (5). P. 1783–1796. https://doi.org/10.4269/ajtmh.20-0986
  54. Scherbakov N., Szklarski M., Hartwiget J. et al. Peripheral endothelial dysfunction in myalgic encephalomyelitis /chronic fatigue syndrome // ESC Heart Fail. 2020. V. 7 (3). P. 1064–1071. https://doi.org/10.1002/ehf2.12633
  55. Sen S., McDonald S.P., Coates P.T.H., Bonder C.S. Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease // Clin. Sci. (Lond.). 2011. V. 120. P. 263–283. https://doi.org/10.1042/CS20100429
  56. Siddiqi H.K., Libby P., Ridker P.M. COVID-19 – a vascular disease // Trends Cardiovasc. Med. 2021. V. 31 (1). P. 1–5. https://doi.org/10.1016/j.tcm.2020.10.005
  57. Stein S.R., Ramelli S.C., Grazioliet A. et al. SARS-CoV-2 infection and persistence throughout the human body and brain // Nature. 2022. V. 612 (7941). P. 758–763. https://doi.org/10.1038/s41586-022-05542-y
  58. Sun J., Xiao J., Sunet R. et al. Prolonged persistence of SARS-CoV-2 RNA in body fluids // Emerg. Infect. Dis. 2020. V. 26. P. 1834–1838. https://doi.org/10.3201/eid2608.201097
  59. Tehrani H.A., Darnahal M., Nadji S.A., Haghighil S. COVID-19 re-infection or persistent infection in patient with acute myeloid leukaemia M3: a mini review // New Microb. New Infect. 2021. V. 39. P. 100830. https://doi.org/10.1016/j.nmni.2020.100830
  60. Welte T. SARS-CoV-2-triggered immune reaction: for COVID-19, nothing iIs as old as yesterday’s knowledge // Am. J. Respir. Crit. Care Med. 2021. V. 203 (2). P. 156. https://doi.org/10.1164/rccm.202011-4194ED
  61. Wirth K.J., Scheibenbogen C., Friedemann P. An attempt to explain the neurological symptoms of myalgic encephalomyelitis/chronic fatigue syndrome // J. Transl. Med. 2021. V. 19 (1). P. 471. https://doi.org/10.1186/s12967-021-03143-3
  62. Yong S.J., Liu S. Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies // Rev. Med. Virol. 2021. V. 32 (4). P. e2315. https://doi.org/10.1002/rmv.2315
  63. Zhang J., Tecson K.M., McCullough P.A. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy // Rev. Cardiovasc. Med. 2020. V. 21 (3). P. 315–319. https://doi.org/10.31083/j.rcm.2020.03.12

Copyright (c) 2023 О.А. Гомазков

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies